Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Electrocatalytic Generation of H₂ from Neutral Water in Acetonitrile Using Manganese Polypyridyl Complexes with Ligand Assistance

Gyandshwar Kumar Rao, Mohammad Parsa Jamshidi, Jeremy I. G. Dawkins, Wendy Pell, Illia Korobkov, Darrin Richeson*

Department of Chemistry and Biomolecular Sciences and the Center for Catalysis Research and Innovation, University of Ottawa, Ottawa, Ontario K1N6N5

Content	Pages
Experimental Details	S5-S8
Figure S1 . Structural representation of the cation component of the complex $[Mn([\kappa^3- tpa)(CO)_3]$ Hydrogen atoms and the thermal ellipsoids of the ligand carbon atoms and the bromide anion ar clarity.	Br (1 ⁺Br⁻). e omitted for S9
Table S1. Single crystal X-ray structure parameters for compounds 2+Cl ⁻ and 2+OTf ⁻ .	S10
Table S2. Select bond lengths (Å) and angles (deg) from the single crystal X-ray analysis for comp 2⁺OTf⁻.	lexes 2 +Cl ⁻ and S11
Figure S2. Structural representation of the cation component of the complex $[Re([\kappa^{3-} tpa)(CO)_{3} Hydrogen atoms, the thermal ellipsoids of the ligand carbon atoms, chloride anion and co-carbon chloroform and water are omitted for clarity.$]Cl (2 +Cl ⁻). rystallized S12
Figure S3. Structural representation of one of the two cations observed in the crystal structure or tpa)(CO) ₃]OTf (2 ⁺ OTf). Hydrogen atoms, the thermal ellipsoids of the ligand carbon atoms, triflat crystallized water are omitted for clarity.	f complex [Re([κ ³ - te anion and co- S13
Figure S4. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ under N ₂ in CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.	S14
Figure S5. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ in CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte with different scan r	ates. S14
Figure S6 . Plot of scan rate ^{1/2} vs current for the first reduction peak of $[Mn(\kappa^3-tpa)(CO)_3]OTf$.	S15
Figure S7 . Plot of scan rate ^{1/2} vs current for the second reduction peak of[Mn(κ^3 -tpa)(CO) ₃]OTf.	S15
Figure S8 . Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ under N ₂ with increasing concentration in 15 mL of CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting ele at 100 mV/s.	of water ectrolyte S16
Figure S9 . Plot of i_{cat}/i_p versus increasing concentration of water in CH ₃ CN for the electrocat water using [Mn(κ^3 -tpa)(CO) ₃]OTf with 0.1M tetrabutylammoniumhexafluorophosphate (TE electrolyte at 100 mV/s.	alytic reduction of GAHFP) supporting S17
Figure S10 . Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]Br under N_2 in CH_3CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) as supporting electrolyte at 100 mV/s.$	S18
Figure S11. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]Br$ under N ₂ , and with increasing concen CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at	tration of water in 100 mV/s. S19

Figure S12. Cyclic voltammograms for acetonitrile and tpa ligand using a glassy carbon working electrode under N_2 with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s (black and blue traces respectively). Under the same conditions these measurements were also carried out with addition of 1mL of water (red and green traces respectively). S20

Table S3. Bulk electrolysis at the potential of the first reduction peak for $[Mn(\kappa^3-tpa)(CO)]$ concentration of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with additional statement of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with additional statement of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with additional statement of 1mM and 100mM support of 1mM and 1mM are statement of 1mM and 100mM support of 1mM and 100mM support of 1mM are statement of 1mM and 100mM support of 1mM and 1mM and 100mM support of 1mM and 1mM are statement of 1mM and 100mM support of 1mM are statement of 1mM and 100mM support of 1mM are statement of 1mM and 100mM support of 1mM are statement of 1mM and 100mM support of 1mM are statement of 1mM and 100mM support of 1mM are statement]OTf. Catalyst ion of 2 mL water.
Table S4. Bulk electrolysis at the potential of the first reduction peak for [Mn(κ^3 -tpa)(CO) ₃	S21]Br. Catalyst
concentration of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with addit	ion of 2 mL water.
Table S5. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) at $[Mn(\kappa^3-tpa)(CO)_3]OTf$.	first reduction peak of S22
Table S6. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) at f $[Mn(\kappa^3-tpa)(CO)_3]Br.$	irst reduction peak of S22
Figure S13. Controlled potential electrocatalytic production of H_2 in acetonitrile at $-2.0 V$ [Mn(tpa)(CO) ₃]OTf (1 ⁺ OTf ⁻) from H_2O (blue diamonds) and from aqueous phosphate buffer	by 1.0mM er (red circles). The line
represents a linear regression of this data and indicates 35% efficiency.	S23
Figure S14. Controlled potential electrocatalytic production of H_2 in acetonitrile at $-2.0 V$ [Mn(tpa)(CO) ₃]Br (1 ⁺ Br ⁻) from H_2O (blue triangles) and from aqueous phosphate buffer (re	by 1.0mM ed squares). The line
represents a linear regression of this data and indicates 41% efficiency.	523
Figure S15 . Cyclic voltammogram of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf in CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte.	S24
Figure S16 . Cyclic voltammogram of $[Re(\kappa^3-tpa)(CO)_3]OTf$ in CH ₃ CN with 0.1M tetrabutylath hexafluorophosphate (TBAHFP) supporting electrolyte with different scan rate.	mmonium- S24
Figure S17 . Plot of scan rate ^{1/2} vs current at first reduction peak of $[Re(\kappa^3-tpa)(CO)_3]OTf$ in	CH₃CN. S25
Figure S18 . Plot of scan rate ^{1/2} vs current at second reduction peak of $[Re(\kappa^3-tpa)(CO)_3]OT$	f in CH₃CN. S25
Figure S19 . Cyclic voltammogram of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf under N ₂ and increasing concen with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at	tration of water in CH₃CN 100 mV/s. S26
FigureS20 . Cyclic voltammogram of $[Re(\kappa^3-tpa)(CO)_3]Br$ under N ₂ in CH ₃ CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.	S27
Figure S21 . Cyclic voltammogram of $[Re(\kappa^3-tpa)(CO)_3]Br$ under N ₂ and increasing concent with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at	tration of water in CH₃CN 100 mV/s. S27
Table S7. Bulk electrolysis experiments in presence of 1.5 mL water at first reduction peal	κ of [Re(κ^3 -tpa)(CO) ₃]OTf. S28
Table S8. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) at f [Re(κ^3 -tpa)(CO) ₃]OTf.	irst reduction peak of S28

Figure S22 . Controlled potential electrocatalytic production of H_2 in acetonitrile at -2.0 V by 1.0m [Re(tpa)(CO) ₃]OTf (2 ⁺ OTf ⁻) from H_2O (135 min., blue diamonds) and from aqueous phosphate bu circles). The line represents a linear regression of this data and indicates 31% efficiency.	nM ffer (216 min., red S29
Table S9. A comparison of metal –ligand distances in the computationally optimized structures of $[Mn(\kappa^3-tpa)(CO)_3]^+$ (1 ⁺) and that of the single electron reduction product $[Mn(\kappa^3-tpa)(CO)_3]$ (1) an reduction product $[Mn(\kappa^3-tpa)(CO)_3]^-$ (1 ⁻).	f the parent cation d the double S30
Figure S23 . A ball and stick representation of the optimized single reduction product, 1 , with ad $[Mn(\kappa^3-tpaH)(CO)_3]^+(1H)$ in CH ₃ CN. This species is discussed in the text. For clarity, only the addec	dition of a proton, I proton is shown. S30
Table S10 . Optimized coordinates for single reduction product, 1 , with added proton [Mn(κ^3 -tpaH discussed in the text.	H)(CO)₃] ⁺ (1H) as S31
Figure S24 . A ball and stick representation of the optimized double reduction product, 1^{-} , with ac in CH ₃ CN, [MnH(κ^{3} -tpa)(CO) ₃] (1^{-} H) as discussed in the text. For clarity, only the added proton is s	ddition of a proton hown. S32
Table S11. Optimized coordinates for double reduction product, 1 ⁻ , with added proton [MnH(κ^3 -discussed in the text.	tpa)(CO) ₃] (1⁻H) as S33
Figure S25 .A ball and stick representation of the optimized double reduction product, 1 ⁻ , with ad proton in CH ₃ CN, [MnH(κ^3 -tpaH)(CO) ₃] ⁺ (1 ⁻ HH ⁺) as discussed in the text. For clarity, only the a shown.	ldition of a second Idded protons are S35
Table S12. Optimized coordinates for double reduction product, 1 ⁻ , with addition of a second tpaH)(CO) ₃] ⁺ (1 ⁻ HH ⁺), as discussed in the text.	proton, [MnH(κ^3 - S36
Table S13. Sum of electronic and thermal free energies corrected for ZPE for the complexes prese proposed mechanism (Figure 4). Values were obtained using DFT with the B3LYP functional and T	ented in the ZVP basis set.
Optimizations employed the PCM formalism using acetonitrile as solvent.	S38

Experimental:

General Procedures. Reagents and analytical grade solvents were purchased from Strem Chemicals or Sigma Aldrich and used without further purification. Tris-2-picolylamine or tris(2-pyridylmethyl)amine (tpa) was prepared according to the literature procedure (Britovesk, G. J. P; England, J; White A. J. P; *Inorg.Chem.* **2005**, 44, 8125). The¹H, ¹³C{¹H} and ¹⁹F{¹H} NMR spectra were recorded at 400, 100 and 376 MHz respectively with chemical shifts reported in ppm using the residual protons of the NMR solvent as internal standards. Carbon-13 DEPT NMR experiments were used routinely to determine the number of hydrogen atoms linked to carbon atoms. IR spectra were collected using an Agilent Cary FTIR spectrometer.

Electrochemical experiments have been carried out in a single compartment cell wrapped with aluminum foil using a VersaSTAT 3 (Princeton Applied Research) potentiostat. Samples were prepared in a glovebox, sealed, removed from the glovebox and connected to a Schlenk line and maintained under a nitrogen atmosphere. A conventional three electrode system was employed consisting of a glassy carbon working electrode (diameter = 0.2 cm), a Pt wire as the auxiliary electrode, and an Ag wire as a pseudo-reference electrode. Ferrocene was added as a reference compound. Dried acetonitrile was purchased from Sigma Aldrich and stored on molecular sieves in glove-box. Tetrabutylammoniumhexafluorophosphate, $[(n-Bu)_4N]PF_6$ (TBAHFP), the supporting electrolyte, was crystallized two times with methanol, dried in vacuum at 90 °C for 24 h before used and stored in a glovebox. The electrolyte solution, 0.1 M $[(n-Bu)_4N]PF_6$ in CH₃CN, was saturated with N₂ by purging with N₂ for 10 min prior to each experiment. The concentration of catalyst was 1 mM (15 mL acetonitrile) in each experiment. For bulk electrolysis experiments the working electrode was a glassy carbon rod (diameter = 0.4 cm; length 2 cm) with Pt gauze as the auxiliary electrode and a Ag wire as pseudo-reference electrode. Water or aqueous phosphate buffer was added to the electrolyte solution as the source of hydrogen. Hydrogen production was measured using an Agilent 7820A gas chromatograph (GC) with an Agilent select permanent gases column and equipped with a thermal conductivity detector (TCD). Mass spectra measurements were carried out in an Agilent 5977E GC/MSD using a DB-5ms column.

S5

X-ray Crystallography: The crystals were mounted on thin glass fibers using paraffin oil. Prior to data collection crystals were cooled to 200.15 °K. Data were collected on a Bruker AXS SMART single crystal diffractometer equipped with a sealed Mo tube source (wavelength 0.71073 Å) APEX II CCD detector. Raw data collection and processing were performed with APEX II software package from BRUKER AXS.¹ Initial unit cell parameters were determined from 60 data frames with 0.3° ω scan each collected at the different sections of the Ewald sphere. Semi-empirical absorption corrections based on equivalent reflections were applied.² Systematic absences in the diffraction data-set and unit-cell parameters were consistent with the assigned space group. The structures were solved by direct methods, completed with difference Fourier synthesis, and refined with full-matrix least-squares procedures based on *F*². All hydrogen atoms were treated as idealized contributions during the refinement. All scattering factors are contained in several versions of the SHELXTL program library, with the latest version used being v.6.12.³

Computational Details: Optimized structures were obtained from density functional theory (DFT) computations using Gaussian 09.⁴ Computations were performed on complexes solvated with acetonitrile using the integral equation formalism variant of PCM, with the default parameters for acetonitrile. The TZVP basis set was used for all atoms. Using the optimized starting structure for $[Mn(\kappa^3-tpa)(CO)_3]^+$ (1⁺), further optimized structures were determined for the single and double reduction products, $[Mn(\kappa^3-tpa)(CO)_3]$ (1) and $[Mn(\kappa^3-tpa)(CO)_3]^-$ (1⁻), in acetonitrile. Protonation of each of these species was explored computationally by locating the added protons in various locations within the reduced species followed by re-optimization. All of these optimizations were performed in acetonitrile. In the case of the singly reduced complex, $[Mn(\kappa^3-tpa)(CO)_3]$ (1), the lowest energy structure was observed for protonation of uncoordinated py, $[Mn(\kappa^3-tpaH)(CO)_3]^+$ (1⁺), was observed to be $[MnH(\kappa^3-tpa)(CO)_3]$ (1⁺) and these results are represented in Fig S24 and Table S11. Addition of a second proton to this protonated

doubly reduced species, **1**⁻**H**, was explored and the lowest energy optimized structure was determined to be $[MnH(\kappa^3-tpaH)(CO)_3]^+(1-HH^+)$ with results presented in Fig. S25 and Table S12.

Synthesis of [Mn(\kappa^3-tpa)(CO)₃]Br (1⁺Br). A solution of tpa ligand (0.298 g, 1mmol) was prepared in 15 mL of tetrahydrofuran in a nitrogen glovebox. To this stirred solution was addedMn(CO)₅Br (0.274 g, 1mmol) . The flask was removed from the glovebox and attached to a Schlenk line, wrapped with aluminum foil and heated 80 °C under N₂for 2 h. The solution was cooled and the volume was reduced to ~10 mL *in vacuo*. The resulting yellow precipitate was removed by filtration to give complex **1**⁺Br⁻. Compound **1**⁺Br⁻ was crystallized from a saturated dichloromethane solution via slow diffusion of hexane. Yield 0.425 g (82%).¹H (DMSO-*d*₆, 400MHz): δ 8.89 (d, 2H, ³J = 5.6 Hz), 8.74 (dd, 1H, ³J, ³J = 4Hz, 5.6 Hz), 7.98-8.02 (m, 1H), 7.86-7.92 (m, 3H), 7.52-7.56 (m, 1H), 7.42-7.48 (m, 4H), 5.27 (d, 2H, ²J = 17.2 Hz), 4.96 (s, 2H), 4.39 (d, 2H, ²J = 17.2 Hz). ¹³C {¹H} (DMSO-*d*₆, 100MHz): δ 218.6 (br), 160.9, 153.8, 152.5, 149.9, 140.0, 137.9, 126.8, 125.8, 124.6, 123.2, 71.7, 67.6. IR (cm⁻¹): 3105, 2032, 1914, 1906, 1604, 1586, 1570, 1477, 1427, 1366, 1296, 1256, 1145, 1099, 1059, 1049, 1010, 994, 967, 923, 901, 881, 842, 780, 772, 717, 691, 651, 626, 548. HR-MS (CH₃CN): [M]⁺*m/z* 429.0773; calcd value for C₂₁H₁₈N₄O₃Mn 429.0759 (*δ* = 3.2ppm).

Synthesis of [Mn(\kappa^3-tpa)(CO)₃]OTf (1⁺OTf). A solution of complex 1⁺Br⁻ (0.259 g, 0.5 mmol) was prepared in 10 mL of dichloromethane in a nitrogen glovebox. To this stirring solution was added silver trifluoromethanesulphonate (AgOTf) (0.128 g, 0.5 mmol) . The flask was wrapped with aluminum foil and stirred at room temperature for an additional 16 h under N₂. The solution was filtered and solvent was removed *in vacuo* to give a yellow solid. Single crystals of 1⁺OTf were grown by slow diffusion of hexane into a saturated dichloromethane solution. Yield 0.326 g (84%).¹H (DMSO-*d*₆, 400MHz): δ 8.86 (d, 2H, ³J = 5.2 Hz), 8.71 (d, 1H, ³J = 4 Hz), 7.94-7.98 (m, 1H), 7.80-7.87 (m, 3H), 7.49-7.52 (m, 1H), 7.37-7.43 (m, 4H), 5.22 (d, 2H, ²J = 17.2 Hz), 4.92 (s, 2H), 4.34 (d, 2H, ²J = 17.2 Hz). ¹³C{¹H}(DMSO-*d*₆, 100MHz): δ 218.4 (br), 160.9, 153.8, 152.5, 149.9, 140.0, 137.9, 126.7, 125.8, 123.1, 122.7,123.2,71.8, 67.9. ¹⁹F (DMSO-*d*₆, 376.7MHz): δ -77.7. IR (ATR, cm⁻¹): 2029, 1913, 1906, 1606, 1587, 1570, 1477, 1425, 1368, 1294, 1256, 1140, 1099, 1069, 1049, 1010, 994, 924, 900, 885, 843, 780, 772, 716, 690, 651,

623. HR-MS (CH₃CN): [M]⁺m/z 429.0773; calcd value for C₂₁H₁₈N₄O₃Mn 429.0795 (δ = 5.1 ppm).

Synthesis of [Re(\kappa^3-tpa)(CO)₃]Cl (2⁺Cl⁻). A solution of tpa ligand (0.145 g, 0.487mmol) was made in 15 mL of tetrahydrofuran in a nitrogen glovebox. To this stirring solution was added Re(CO)₅Cl (0.150 g, 0.415mmol). The flask removed from the glovebox, connected to a Schlenk line and heated to 80°C and stirred for an additional 2h under N₂. The solution was cooled and the volume was reduced to ~10 mL *in vacuo*. The resulting colorless precipitate of **2**⁺Cl⁻ was isolated by filtration. Single crystals of **2**⁺Cl⁻ were grown by slow diffusion of hexane into a saturated chloroform solution. Yield 0.2299 g (93%). ¹H (DMSO-*d*₆, 400MHz): δ 8.80 (d, 2H, ³J = 5.6 Hz), 8.71-8.73 (m, 1H), 7.97-8.02 (m, 3H), 7.83 (d, 1H, ³J = 8.0Hz), 7.59-7.52 (m, 3H), 7.42-7.37 (m, 2H), 5.37 (d, 2H, ²J = 16.8 Hz), 4.97 (s, 2H), 4.75 (d, 2H, ²J = 16.8 Hz). ¹³C (DMSO-*d*₆, 400MHz): δ 196.0, 195.2, 160.5, 153.7, 151.7, 149.4, 140.5, 137.4, 126.8, 125.4, 124.6, 123.1, 71.9, 68.1. IR (ATR, cm⁻¹): 2025, 1937, 1896, 1608, 1588, 1571, 1484, 1465, 1281, 1058, 991, 935, 773, 761, 735, 660, 642, 623, 546, 537. HR-MS (CH₃CN): [M]⁺*m*/*z* 559.0815; calcd value for C₂₁H₁₈N₄O₃Re 559.0836 (*δ* = -3.7 ppm).

Synthesis of [Re(κ³-tpa)(CO)₃]OTf (2⁺OTf⁻). A solution of complex 2⁺Cl⁻ (0.0403 g, 0.0626mmol) was prepared in 20 mL of dichloromethane in a nitrogen glovebox. To this stirring solution was added silver trifluoromethanesulphonate (AgOTf) (0.0162 g, 0.0626mmol). The flask was wrapped with aluminum foil and stirred at room temperature for an additional 30 min. The solution was filtered and solvent was removed *in vacuo* to give a colorless solid. Single crystals of 2⁺OTf⁻ were grown by slow diffusion of pentane into a saturated dichloromethane solution. Yield: 0.0340g (77%). ¹H (DMSO-*d*₆, 300MHz): δ 8.81 (d, 2H, ³J = 5.4Hz), 8.74-8.72 (m, 1H), 8.03-7.94 (m, 3H), 7.80 (d, 1H, ³J = 7.5Hz), 7.57-7.52 (m, 3H), 7.42-7.37 (m, 2H), 5.37 (d, 2H, ²J = 16.5Hz), 4.97 (s, 2H), 4.71 (d, 2H, ²J = 16.5Hz). ¹³C (DMSO-*d*₆, 300MHz): δ 196.0, 195.2, 160.6, 153.8, 151.8, 149.4, 140.5, 137.5, 126.5, 125.6, 124.3, 123.5, 122.8(q), 72.0, 68.1. ¹⁹F (DMSO-*d*₆, 282MHz): δ -77.6. IR (ATR, cm⁻¹): 2029, 1909, 1612, 1591, 1448, 1275, 1257, 1222, 1151, 1030, 962, 914, 832, 765, 750, 636, 573, 548. HR-MS (CH₃CN): [M]⁺*m*/*z* 559.0972; calcd value for C₂₁H₁₈N₄O₃Re 559.0909 (δ = 11.3ppm).

Figure S1. Structural representation of the cation component of the complex $[Mn([\kappa^3-tpa)(CO)_3]Br (1^+Br^-)$. Hydrogen atoms and the thermal ellipsoids of the ligand carbon atoms and the bromide anion are omitted for clarity.

Compound	$[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]\text{Cl}, 2^+\text{Cl}^-$	[Re(κ³-tpa)(CO)₃]OTf, 2 ⁺OTf ⁻
Empirical formula	$C_{21}H_{18}CI_1N_4O_3Re(CHCI_3)(H_2O)$	$(C_{22}H_{18}F_{3}N_{4}O_{6}ReS)_{2}(H_{2}O)$
Formula weight Temperature (K)	733.43 200(2)	1437.34 200(2)
λ(Å)	0.71073	0.71073
Crystal system	Triclinic	Orthorhombic
Space group	P -1	P 2 ₁ 2 ₁ 2
a (Å)	10.758(3)	16.8249(14)
b (Å)	10.896(3)	24.919(2)
c (Å)	11.559(3)	12.1149(10)
α (deg)	85.079(14)	90
β (deg)	81.257(15)	90
γ (deg)	83.576(15)	90
V (Å ³)	1327.4(7)	5079.2(7)
Z	2	4
ho (calc) (Mg/m ³)	1.835	1.880
μ (mm⁻¹)	5.015	4.936
Absorption correction	Semi-empirical from equiv	alents
Final R indices [I>2o(I)]		
R1ª	0.0223	0.0248
wR2 ^b	0.0537	0.0545

 Table S1. Single crystal X-ray structure parameters for compounds 2+Cl⁻and 2+OTf⁻.

Table S2. Select bond lengths (Å) and angles (deg) from the single crystal X-ray analysis for complexes **2**⁺Cl⁻and **2**⁺OTf⁻.

$[Re(\kappa^{3}-tpa)(CO)_{3}]C$	Cl, 2 ⁺Cl⁻	[Re(<i>k</i> ³ -tpa)(CO) ₃]0	DTf, 2 ⁺OTf⁻		
Re(1)-C(19)	1.907(4)	Re(1)-C(20)	1.927(6)		
Re(1)-C(21)	1.916(3)	Re(1)-C(19)	1.933(7)		
Re(1)-C(20)	1.928(3)	Re(1)-C(21)	1.941(6)		
Re(1)-N(2)	2.173(2)	Re(1)-N(3)	2.175(5)		
Re(1)-N(3)	2.175(3)	Re(1)-N(2)	2.187(5)		
Re(1)-N(1)	2.224(3)	Re(1)-N(1)	2.249(5)		
O(1)-C(19)	1.150(4)	Re(2)-C(40)	1.911(7)		
O(2)-C(20)	1.145(3)	Re(2)-C(41)	1.915(6)		
O(3)-C(21)	1.163(4)	Re(2)-C(42)	1.917(7)		
		Re(2)-N(7)	2.164(5)		
		Re(2)-N(6)	2.177(5)		
		Re(2)-N(5)	2.222(5)		
		O(1)-C(19)	1.142(8)		
		O(2)-C(20)	1.145(7)		
		O(3)-C(21)	1.135(7)		
		O(4)-C(40)	1.166(8)		
		O(5)-C(41)	1.158(7)		
		O(6)-C(42)	1.158(7)		
C(19)-Re(1)-C(21)	89.37(14)	C(20)-Re(1)-C(19)	85.8(3)	C(41)-Re(2)-N(6)	171.9(2)
C(19)-Re(1)-C(20)	87.82(13)	C(20)-Re(1)-C(21)	88.5(2)	C(42)-Re(2)-N(6)	96.3(2)
C(21)-Re(1)-C(20)	90.82(13)	C(19)-Re(1)-C(21)	86.4(3)	N(7)-Re(2)-N(6)	78.78(18)
C(19)-Re(1)-N(2)	94.99(11)	C(20)-Re(1)-N(3)	94.6(2)	C(40)-Re(2)-N(5)	174.8(2)
C(21)-Re(1)-N(2)	96.11(10)	C(19)-Re(1)-N(3)	98.5(2)	C(41)-Re(2)-N(5)	95.3(2)
C(20)-Re(1)-N(2)	172.54(12)	C(21)-Re(1)-N(3)	174.3(2)	C(42)-Re(2)-N(5)	97.5(2)
C(19)-Re(1)-N(3)	96.64(12)	C(20)-Re(1)-N(2)	172.0(2)	N(7)-Re(2)-N(5)	78.37(17)
C(21)-Re(1)-N(3)	173.55(11)	C(19)-Re(1)-N(2)	99.0(2)	N(6)-Re(2)-N(5)	77.62(19)
C(20)-Re(1)-N(3)	91.76(12)	C(21)-Re(1)-N(2)	98.18(19)		
N(2)-Re(1)-N(3)	81.06(9)	N(3)-Re(1)-N(2)	78.42(17)		
C(19)-Re(1)-N(1)	172.36(10)	C(20)-Re(1)-N(1)	97.0(2)		
C(21)-Re(1)-N(1)	95.28(12)	C(19)-Re(1)-N(1)	175.4(2)		
C(20)-Re(1)-N(1)	98.15(11)	C(21)-Re(1)-N(1)	97.3(2)		
N(2)-Re(1)-N(1)	78.51(9)	N(3)-Re(1)-N(1)	77.60(18)		
N(3)-Re(1)-N(1)	78.50(9)	N(2)-Re(1)-N(1)	77.86(17)		
		C(40)-Re(2)-C(41)	87.6(3)		
		C(40)-Re(2)-C(42)	86.8(3)		
		C(41)-Re(2)-C(42)	88.5(2)		
		C(40)-Re(2)-N(7)	97.2(2)		
		C(41)-Re(2)-N(7)	96.0(2)		
		C(42)-Re(2)-N(7)	174.1(2)		
		C(40)-Re(2)-N(6)	99.1(2)		

Figure S2. Structural representation of the cation component of the complex $[Re([\kappa^3-tpa)(CO)_3]CI (2^+CI^-)$. Hydrogen atoms, the thermal ellipsoids of the ligand carbon atoms, chloride anion and co-crystallized chloroform and water are omitted for clarity.

Figure S3. Structural representation of one of the two cations observed in the crystal structure of complex $[Re([\kappa^3- tpa)(CO)_3]OTf (2^+OTf^-)]$. Hydrogen atoms, the thermal ellipsoids of the ligand carbon atoms, triflate anion and co-crystallized water are omitted for clarity.

Figure S4. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ under N₂ in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Figure S5. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte with different scan rates.

Figure S6. Plot of scan rate^{1/2} vs current for the first reduction peak of $[Mn(\kappa^{3}-tpa)(CO)_{3}]OTf$

Figure S7. Plot of scan rate^{1/2} vs current for the second reduction peak of $[Mn(\kappa^{3}-tpa)(CO)_{3}]OTf$

Figure S8. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]OTf$ under N₂with increasing concentration of water in 15 mL of CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Figure S9. Plot of i_{cat}/i_p versus increasing concentration of water in CH₃CN for the electrocatalytic reduction of water using [Mn(κ^3 -tpa)(CO)₃]OTf with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s. Turn over frequencies estimated using the equation $TOF = \frac{Fvn_p^3}{RT} \left(\frac{0.4463}{n_{cat}}\right)^2 \left(\frac{i_{cat}}{i_p}\right)^2_{\text{gave a value of 6.8 s}^{-1}} \text{ with 8mM water.}$

Figure S10. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]Br$ under N₂ in CH₃CN with 0.1M tetrabutylammonium hexafluorophosphate (TBAHFP) as supporting electrolyte at 100 mV/s.

Figure S11. Cyclic voltammogram of $[Mn(\kappa^3-tpa)(CO)_3]Br$ under N₂ and with increasing concentration of water in CH₃CN with 0.1M tetrabutylammonium hexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Figure S12. Cyclic voltammograms for acetonitrile and tpa ligand using a glassy carbon working electrode under N_2 with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s (black and blue traces respectively). Under the same conditions these measurements were also carried out with addition of 1mL of water (red and green traces respectively).

Table S3. Bulk electrolysis at the potential of the first reduction peak for $[Mn(\kappa^3-tpa)(CO)_3]OTf$. Catalyst concentration of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with addition of 2 mL water.

Time (s)	μ mol of H ₂	μ mol of H ₂ (Obtained)
	(Theoretical)	
0	0	0
2000	19	13
6000	52	25
11000	100	33

Table S4. Bulk electrolysis at the potential of the first reduction peak for $[Mn(\kappa^3-tpa)(CO)_3]Br$. Catalyst concentration of 1mM and 100mM supporting electrolyte in 15mL acetonitrile with addition of 2 mL water.

Time (s)	μ mol of H ₂ (Theoretical)	μ mol of H ₂ (Obtained)
0	0	0
3600	19	16
7200	52	23
11000	78	30
56750	284	123

Time (s)	μ mol of H ₂	μ mol of H ₂ (Obtained)
	(theoretical)	
0	0	0
1800	47	23
3800	107	44
7200	195	62

Table S5. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) at
first reduction peak of [Mn(κ^3 -tpa)(CO) ₃]OTf.

Table S6. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) atfirst reduction peak of $[Mn(\kappa^3-tpa)(CO)_3]Br.$

Time (s)	μmol of H ₂ (theoretical)	μ mol of H ₂ (Obtained)
0	0	0
1800	71	38
4200	188	91
7400	358	137

Figure S13. Controlled potential electrocatalytic production of H_2 in acetonitrile at -2.0 V by 1.0mM [Mn(tpa)(CO)₃]OTf (1⁺OTf⁻) from H_2O (183 min., blue diamonds) and from aqueous phosphate buffer (120 min., red circles). The line represents a linear regression of this data and indicates 35% efficiency.

Figure S14. Controlled potential electrocatalytic production of H_2 in acetonitrile at -2.0 Vby 1.0mM [Mn(tpa)(CO)₃]Br (1⁺Br⁻) from H_2O (945 min., blue triangles) and from aqueous phosphate buffer (120 min., red squares).The line represents a linear regression of this data and indicates 41% efficiency.

Figure S15. Cyclic voltammogram of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte.

Figure S16. Cyclic voltammogram of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte with different scan rate.

Figure S17. Plot of scan rate^{1/2} vs current at first reduction peak of $[Re(\kappa^3-tpa)(CO)_3]OTf$ in CH₃CN.

Figure S18. Plot of scan rate^{1/2} vs current at second reduction peak of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf in CH₃CN.

Figure S19. Cyclic voltammogram of $[Re(\kappa^3-tpa)(CO)_3]OTf$ under N₂ and increasing concentration of water in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Figure S20. Cyclic voltammogram of $[Re(\kappa^3-tpa)(CO)_3]Br$ under N₂ in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Figure S21. Cyclic voltammogram of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ Br under N₂ and increasing concentration of water in CH₃CN with 0.1M tetrabutylammoniumhexafluorophosphate (TBAHFP) supporting electrolyte at 100 mV/s.

Time (s)	μ mol of H ₂ (Calculated)	μ mol of H ₂ (Obtained)
0	0	0
3600	38	17
8100	69	40

Table S8. Bulk electrolysis experiments in presence of 1.5 mL phosphate buffer (pH 7) at first reduction peak of $[\text{Re}(\kappa^3-\text{tpa})(\text{CO})_3]$ OTf.

Time (s)	μ mol of H ₂ (Calculated)	μ mol of H ₂ (Obtained)
0	0	0
1800	38	13
8000	639	179
13000	1154	371

Figure S22. Controlled potential electrocatalytic production of H_2 in acetonitrile at -2.0 V by 1.0mM [Re(tpa)(CO)₃]OTf (**2**⁺OTf⁻) from H_2O (135 min., blue diamonds) and from aqueous phosphate buffer (216 min., red circles). The line represents a linear regression of this data and indicates 31% efficiency.

Table S9. A comparison of metal –ligand distances in the computationally optimized structures of the parent cation $[Mn(CO)_3(\kappa^3-tpa)]^+(1^+)$ and that of the single electron reduction product $[Mn(CO)_3(\kappa^3-tpa)]$ (1) and the double reduction product $[Mn(CO)_3(\kappa^3-tpa)]^-(1^-)$

Bond/cmpd	$[Mn(CO)_3(\kappa^3-tpa)]^+(1^+)$	[Mn(CO) ₃ (κ^{3} -tpa)] (1)	$[Mn(CO)_3(\kappa^3-tpa)]^-(1^-)$
M-N _{amine}	2.192	2.234	2.437
M-N _{py}	2.096	2.095	2.126
M-N _{py}	2.106	2.108	2.108
M-CO equatorial	1.847, 1.837	1.826, 1.818	1.808, 1.806
M-CO axial	1.827	1.811	1.782

Figure S23. A ball and stick representation of the optimized single reduction product, **1**, with addition of a proton, $[Mn(\kappa^3-tpaH)(CO)_3]^+(1H)$ in CH₃CN. This species is discussed in the text. For clarity, only the added proton is shown.

Table S10. Optimized coordinates for single reduction product, **1**, with added proton $[Mn(\kappa^{3}-tpaH)(CO)_{3}]^{+}(1H)$ as discussed in the text.

Center Number	Atomic Number	Atomic Type	Coord X	dinates (Angs Y	stroms) Z
	 25		0.318347	-0.732685	0.663983
2	8	0	1.478625	-1.798842	3.179807
3	8	0	-2.029298	-0.042995	2.369039
4	8	0	-0.607830	-3.490261	0.032082
5	6	0	1.057875	-1.374445	2.199727
6	6	0	-1.177718	-0.311387	1.651686
7	6	0	-0.268051	-2.420058	0.263250
8	7	0	-0.398125	0.151221	-1.199307
9	7	0	2.058638	-0.960045	-0.479746
10	7	0	1.058203	1.219893	0.890694
11	7	0	-3.625725	1.152384	-1.157385
12	6	0	0.628980	-0.130072	-2.251926
13	1	0	0.673354	0.688682	-2.973481
14	1	0	0.297359	-1.012493	-2.803843
15	6	0	1.994081	-0.447856	-1.720526
16	6	0	3.121945	-0.321686	-2.524673
17	1	0	3.029900	0.109748	-3.512248
18	6	0	4.346319	-0.764286	-2.048716
19	1	0	5.235947	-0.678242	-2.658650
20	6	0	4.406972	-1.322931	-0.777394
21	1	0	5.335793	-1.690090	-0.363914
22	6	0	3.248019	-1.393897	-0.025301
23	1	0	3.266985	-1.807587	0.971984
24	6	0	-0.479117	1.611770	-0.920782
25		0	-1.411056	1./8/8/2	-0.382/4/
26		0	-0.519073	2.185627	-1.850882
27	6	0	0.637002	2.091504	-0.044235
28	0	0	1.1450/1	3.381625	-0.130109
29		0	0.709247 2.101446	4.0404/2	-0.903377
3U 21	0	0	2.101446	J. 70/211	0.700944
32	L 6	0	2.510200	4.794311 2.808601	1 762652
32	1	0	3 264008	2.090001	2 500079
34	1 6	0	1 984536	1 623043	1 775967
35	1	0	2 301481	0 899967	2 513207
36	6	0	-1 729818	-0 318016	-1 808478
37	1	0	-1 805510	0.169369	-2 788686
38	1	0	-1.608551	-1.383485	-1.985040
39	6	0	-2.989983	-0.102347	-1.049769
40	6	0	-3.646290	-1.095462	-0.354865
41	1	Ũ	-3.175066	-2.067950	-0.291077
42	6	0	-4.886181	-0.884346	0.256344
43	1	0	-5.380203	-1.678875	0.796135

Standard orientation:

48 1 0 -3.300793 1.806121 -1.852889		44 45 46 47 48	6 1 6 1 1	0 0 0 0	-5.493501 -6.456234 -4.874093 -5.292120 -3.300793	0.399353 0.608689 1.374013 2.356684 1.806121	0.119594 0.566125 -0.591953 -0.752992 -1.852889
-------------------------------------	--	----------------------------	-----------------------	------------------	---	--	---

Figure S24. A ball and stick representation of the optimized double reduction product of, 1⁻, with addition of a proton in CH₃CN, [MnH(κ^2 -tpa)(CO)₃](1⁻H) as discussed in the text. For clarity, only the added proton is shown.

$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Center	Atomic	Atomic	Coor	dinates (Ang	stroms)
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Number	Number	Туре	Х	Y	Z
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1	25	0	-1.470054	1.223786	-0.276896
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2	8	0	-4.017799	1.788185	-1.637562
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3	8	0	-0.753231	4.045184	-0.721933
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4	8	0	-0.110840	0.591850	-2.858018
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5	6	0	-3.004990	1.554674	-1.130405
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6	6	0	-0.996776	2.927480	-0.545810
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	7	6	0	-0.589631	0.716424	-1.813017
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	7	0	0.439192	-1.498605	-0.557791
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9	7	0	-2.336846	-0.736059	0.295753
1170 3.802012 -1.869803 -0.35732 1260 -0.771744 -2.187990 -1.00281 1310 -0.613222 -3.275223 -1.05575 1410 -0.988086 -1.864003 -2.02594 1560 -1.997744 -1.968504 -0.14495 1660 -2.764414 -3.091691 0.17308 1710 -2.451545 -4.060638 -0.19161 1860 -3.901433 -2.970157 0.95459 1910 -4.499602 -3.838561 1.19912 2060 -4.234132 -1.710259 1.42864 2110 -5.097116 -1.547361 2.05971 2260 -3.430352 -0.638586 1.08037 2310 -3.655008 0.355429 1.43333 2460 0.668797 -1.519191 0.8187 2510 1.480995 -2.204101 1.4258 2610 -0.214915 -1.09804 1.39282 2760 0.980389 -0.169881 1.50139 2860 2.059771 1.043228 3.12849 3110 3.0953971 1.043228 3.12849 3310 1.502064 2.152977 2.86378 3310 1.502064 2.1529771 2.863	10	7	0	0.224457	0.915011	1.225520
126 -0.771744 -2.187990 -1.00281 1310 -0.613222 -3.275223 -1.00575 1410 -0.98086 -1.864003 -2.02594 1560 -1.997744 -1.968504 -0.14495 1660 -2.764414 -3.091691 0.17308 1710 -2.451545 -4.060638 -0.19161 1860 -3.901433 -2.970157 0.95459 1910 -4.499602 -3.838561 1.19912 2060 -4.234132 -1.710259 1.42864 2110 -5.097116 -1.547361 2.05971 2260 -3.430352 -0.638586 1.08037 2310 -3.655008 0.355429 1.43333 2460 0.668797 -1.519191 0.88187 2510 -0.214915 -1.903804 1.39282 2760 0.980389 -0.169881 1.50139 2860 2.015402 -0.124343 2.43943 2910 2.598799 -1.018003 2.61595 3060 1.502064 2.152977 2.86378 3310 1.652202 3.095761 3.37202 3460 0.495753 2.038170 1.92102 3510 -0.141426 2.884136 1.72046 </td <td>11</td> <td>7</td> <td>0</td> <td>3.802012</td> <td>-1.869803</td> <td>-0.357320</td>	11	7	0	3.802012	-1.869803	-0.357320
1310 -0.613222 -3.275223 -1.05575 1410 -0.988086 -1.864003 -2.02594 1560 -1.997744 -1.968504 -0.14495 1660 -2.764414 -3.091691 0.17308 1710 -2.451545 -4.060638 -0.19161 1860 -3.901433 -2.970157 0.95459 1910 -4.499602 -3.838561 1.19912 2060 -4.234132 -1.710259 1.42864 2110 -5.097116 -1.547361 2.05971 2260 -3.430352 -0.638586 1.08037 2310 -3.655008 0.355429 1.43333 2460 0.668797 -1.519191 0.88187 2510 -0.214915 -1.903804 1.39282 2760 2.015402 -0.124343 2.43943 2910 2.598799 -1.018003 2.61595 3060 2.015402 -0.124343 2.43943 2910 3.095397 1.084407 3.85267 3260 1.502064 2.152977 2.86378 3310 1.652202 3.095761 3.37202 3460 0.495753 2.038170 1.92102 3510 -0.141426 2.884136 1.72046	12	6	0	-0.771744	-2.187990	-1.002816
1410 -0.98086 -1.864003 -2.02594 15 60 -1.997744 -1.968504 -0.14495 16 60 -2.764414 -3.091691 0.17308 17 10 -2.451545 -4.060638 -0.19161 18 60 -3.901433 -2.970157 0.95459 19 10 -4.499602 -3.838561 1.19912 20 60 -4.234132 -1.710259 1.42864 21 10 -5.097116 -1.547361 2.05971 22 60 -3.430352 -0.638586 1.08037 23 10 -3.655008 0.355429 1.43333 24 60 0.68797 -1.519191 0.88187 25 10 1.480995 -2.204101 1.14258 26 10 -0.214915 -1.903804 1.39282 27 60 2.98799 -1.018003 2.61595 30 60 2.291713 1.043228 3.12849 31 10 3.095397 1.084407 3.85267 32 60 1.52202 3.095761 3.37202 34 60 0.495753 2.038170 1.92102 35 10 1.322612 -1.814961 -2.40632 38 10 1.322612 -1.814961 -2.40632 37 10 1.322612	13	1	0	-0.613222	-3.275223	-1.055750
1560 -1.997744 -1.968504 -0.14495 1660 -2.764414 -3.091691 0.17308 1710 -2.451545 -4.060638 -0.19161 1860 -3.901433 -2.970157 0.95459 1910 -4.499602 -3.838561 1.19912 2060 -4.234132 -1.710259 1.42864 2110 -5.097116 -1.547361 2.05971 2260 -3.655008 0.355429 1.43333 2460 0.668797 -1.519191 0.88187 2510 1.480995 -2.204101 1.14258 2610 -0.214915 -1.903804 1.39282 2760 2.98799 -1.018003 2.61595 3060 2.291713 1.043228 3.12849 3110 3.095397 1.084407 3.85267 3260 1.502064 2.152977 2.86378 3310 1.652202 3.095761 3.37202 3460 0.495753 2.038170 1.92102 3510 1.779630 -3.022552 -1.95033 3810 1.322612 -1.814961 -2.40632 3960 2.877573 -1.211307 -1.07033 4060 3.097637 0.80909 -1.55213 <td>14</td> <td>1</td> <td>0</td> <td>-0.988086</td> <td>-1.864003</td> <td>-2.025942</td>	14	1	0	-0.988086	-1.864003	-2.025942
16 6 0 -2.764414 -3.091691 0.17308 17 1 0 -2.451545 -4.060638 -0.19161 18 6 0 -3.901433 -2.970157 0.95459 19 1 0 -4.499602 -3.838561 1.19912 20 6 0 -4.234132 -1.710259 1.42864 21 1 0 -5.097116 -1.547361 2.05971 22 6 0 -3.655008 0.355429 1.43333 24 6 0 0.668797 -1.519191 0.88187 25 1 0 -0.214915 -1.903804 1.39282 27 6 0 0.980389 -0.169881 1.50139 28 6 0 2.015402 -0.124343 2.43943 29 1 0 2.598799 -1.018003 2.61595 30 6 0 2.291713 1.043228 3.12849 31 1 0 3.095397 1.084407 3.85267 32 6 0 1.502064 2.152977 2.86378 33 1 0 -0.141426 2.884136 1.72046 35 1 0 -0.141426 2.844136 1.72046 36 6 0 1.587591 -1.950731 -1.35491 37 1 0 1.322612 -1.814961 -2.40632 39 6 0 2.877573 -1.21130	15	6	0	-1.997744	-1.968504	-0.144958
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	16	6	0	-2.764414	-3.091691	0.173084
18 6 0 -3.901433 -2.970157 0.95459 19 1 0 -4.499602 -3.838561 1.19912 20 6 0 -4.234132 -1.710259 1.42864 21 1 0 -5.097116 -1.547361 2.05971 22 6 0 -3.430352 -0.638586 1.08037 23 1 0 -3.655008 0.355429 1.43333 24 6 0 0.668797 -1.519191 0.88187 25 1 0 1.480995 -2.204101 1.14258 26 1 0 -0.214915 -1.903804 1.39282 27 6 0 2.015402 -0.169881 1.50139 28 6 0 2.015402 -0.124343 2.43943 29 1 0 2.598799 -1.018003 2.61595 30 6 0 2.291713 1.043228 3.12849 31 1 0 3.095397 1.084407 3.85267 32 6 0 1.502064 2.152977 2.86378 33 1 0 -0.141426 2.884136 1.720463 34 6 0 1.587591 -1.950731 -1.35491 37 1 0 1.322612 -1.814961 -2.40632 39 6 0 2.877573 -1.211307 -1.07033 41 1 0 2.332982 0.576279	17	1	0	-2.451545	-4.060638	-0.191615
1910 -4.499602 -3.838561 1.19912 2060 -4.234132 -1.710259 1.42864 2110 -5.097116 -1.547361 2.05971 2260 -3.430352 -0.638586 1.08037 2310 -3.655008 0.355429 1.43333 2460 0.668797 -1.519191 0.88187 2510 1.480995 -2.204101 1.14258 2610 -0.214915 -1.903804 1.39282 2760 0.980389 -0.169881 1.50139 2860 2.015402 -0.124343 2.43943 2910 2.598799 -1.018003 2.61595 3060 2.291713 1.043228 3.12849 3110 3.095397 1.084407 3.85267 3260 1.502064 2.152977 2.86378 3310 1.652202 3.095761 3.372022 3460 0.495753 2.038170 1.921022 3510 -0.141426 2.884136 $1.72046.$ 3660 1.587591 -1.950731 -1.35491 3710 1.322612 -1.814961 $-2.40632.$ 3960 2.877573 -1.211307 -1.07033 4060 3.097677 0.080909 -1.55213 <td>18</td> <td>6</td> <td>0</td> <td>-3.901433</td> <td>-2.970157</td> <td>0.954595</td>	18	6	0	-3.901433	-2.970157	0.954595
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	19	1	0	-4.499602	-3.838561	1.199120
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	20	6	0	-4.234132	-1.710259	1.428643
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21	1	0	-5.097116	-1.547361	2.059717
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	22	6	0	-3.430352	-0.638586	1.080371
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	23	1	0	-3.655008	0.355429	1.433337
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	24	6	0	0.668797	-1.519191	0.881878
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	25	1	0	1.480995	-2.204101	1.142589
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	26	1	0	-0.214915	-1.903804	1.392829
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	27	6	0	0.980389	-0.169881	1.501390
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	28	6	0	2.015402	-0.124343	2.439439
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	29	Ţ	0	2.598799	-1.018003	2.615956
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	30	6	0	2.291713	1.043228	3.128493
32601.5020642.1529772.86378 33 101.652202 3.095761 3.37202 34 60 0.495753 2.038170 1.92102 35 10 -0.141426 2.884136 1.72046 36 60 1.587591 -1.950731 -1.35491 37 10 1.779630 -3.022552 -1.19633 38 10 1.322612 -1.814961 -2.406322 39 60 2.877573 -1.211307 -1.070331 40 60 3.097637 0.080909 -1.55213	31	l	0	3.095397	1.084407	3.852676
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32	6	0	1.502064	2.152977	2.863/88
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	33	l	0	1.652202	3.095/61	3.3/2022
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	34	6	0	0.495/53	2.038170	1.921027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	35	l	0	-0.141426	2.884136	1.720462
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	36	6	0	1.58/591	-1.950/31	-1.354916
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3/	1	U	L.//963U	-3.022332	-1.196334
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	38		U	1.322612	-1.814961	-2.406322
40 0 0 3.097637 0.080909 -1.55213 /1 1 0 2.333083 0.576378 -2.12516	39	6	U	2.0/10/3	-1.21130/	-I.U/U33U
	4 U	6	U	3.09/63/	0.080909	-1.352136
	4 L		U	2.333983	0.3/63/8	-2.135161

Table S11. Optimized coordinates for double reduction product, 1⁻, with added proton $[MnH(\kappa^2-tpa)(CO)_3]$ (1⁻H) as discussed in the text.

43	1	0	4.496932	1.710572	-1.643440
44	6	0	5.261278	0.029236	-0.532967
45	1	0	6.217508	0.477597	-0.297345
46	6	0	4.962271	-1.255976	-0.099697
47	1	0	5.684279	-1.822708	0.478916
48	1	0	-2.216867	1.793088	1.016913

Figure S25.A ball and stick representation of the optimized double reduction product of **1**⁺with addition of a second proton in CH₃CN, [MnH(κ^2 -tpaH)(CO)₃]⁺(**1**⁻HH⁺) as discussed in the text. For clarity, only the added protons are shown.

		Standard	orientation:		
Center	Atomic	Atomic	Coord	dinates (Angs	stroms)
Number	Number	Туре	Х	Y	Ζ
1	25	0	-1.479895	1.214788	-0.204213
2	8	0	-4.116413	1.985176	-1.265881
3	8	0	-0.679059	4.058184	-0.242048
4	8	0	-0.508181	1.196436	-3.012833
5	6	0	-3.074800	1.677734	-0.888288
6	6	0	-0.961417	2.942945	-0.227369
7	6	0	-0.791446	1.055791	-1.897929
8	7	0	0.517185	-1.359223	-0.750247
9	7	0	-2.293851	-0.796499	0.153740
10	7	0	0.184356	0.694729	1.331851
11	7	0	3.735141	-1.597606	-0.307698
12	6	0	-0.718839	-2.024770	-1.318035
13	1	0	-0.463043	-3.062278	-1.515064
14	1	0	-0.919858	-1.536222	-2.270317
15	6	0	-1.917669	-1.968004	-0.407608
16	6	0	-2.606326	-3.155889	-0.181446
17	1	0	-2.258123	-4.068907	-0.644340
18	6	0	-3.723672	-3.162744	0.640321
19	1	0	-4.271150	-4.078679	0.818636
20	6	0	-4.100386	-1.971236	1.237534
21	1	0	-4.950530	-1.912467	1.902817
22	6	0	-3.362810	-0.828078	0.975121
23	1	0	-3.626399	0.111722	1.432862
24	6	0	0.752406	-1.650868	0.709146
25	1	0	1.638037	-2.273995	0.784102
26	1	0	-0.094543	-2.222782	1.080638
27	6	0	0.934326	-0.407295	1.546115
28	6	0	1.854390	-0.498442	2.589127
29	1	0	2.439234	-1.400895	2.700986
30	6	0	2.013498	0.559881	3.466514
31	l	0	2.721832	0.500798	4.282260
32	6	0	1.240069	1.692302	3.263053
33	l	0	1.310046	2.554327	3.911//1
34	6	0	0.355/39	1./1444/	2.199655
35	l	0	-0.262665	2.581936	2.045249
36	6	0	1./18040	-1.6/55/6	-1.6360/8
31	1	U	1.050359	-2./52513	-1.581095
38		U	1.42568/	-1.402105	-2.64/4/0
39	6	U	2.986U8/ 2.264000	-0.969//5	-1.2255U9
40	0	U	3.364022	0.23/033	-1.00/381
4⊥ 4 0		0	Z./43148 A 561600	U./UOJOO 0 000176	-2.009022
47	Ö	U	4.001022	0.0201/0	- <u> </u>

Table S12. Optimized coordinates for double reduction product with two added protons, $[MnH(\kappa^2-tpaH)(CO)_3]^+(1-HH^+)$, as discussed in the text.

43	1	0	4.883554	1.759577	-1.848389
44	6	0	5.336422	0.181090	-0.455899
45	1	0	6.277309	0.597512	-0.121859
46	6	0	4.881102	-1.026486	0.065670
47	1	0	5.462707	-1.559918	0.809040
48	1	0	-2.244825	1.651225	1.109266
49	1	0	0.315387	-0.345813	-0.822262

Table S13. Sum of electronic and thermal free energies corrected for ZPE for the complexes presented inthe proposed mechanism (Figure 4). Values were obtained using DFT with the B3LYP functional andTZVP basis set. Optimizations employed the PCM formalism using acetonitrile as solvent.

Compound	G(Hartree)
1 ⁺ [Mn(κ ³ -tpa)(CO) ₃] ⁺	-2407.09282083
Addition of a one electron to 1 ⁺ to yield	-2407.23369177
[Mn(κ ³ -tpa)(CO) ₃] (1)	
Addition of an electron to 1 to yield $[Mn(\kappa^3-tpa)(CO)_3]^-$ (1)	-2407.25120179
Α	-2407.71566735
B (singlet spin state)	-2407.83424702
C	-2408.28022464

For reference the computed free energy of H_2 in the gas phase =-1.187643 Hartree

References

- (1) APEX Softward Suite v 2010; Bruker AXS: Madison WI, 2010.
- (2) Blessing, B. Y. R. H. Acta Crystallogr. Sect. A1995, 33–38.
- (3) Sheldrick, G. M. Acta Crystallogr. Sect. A2008, 112–122.
- (4) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenb, D. J. Gaussian 09, Revision A.02.