Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

REVISED VERSION

ELECTRONIC SUPPLEMENTARY INFORMATION

Highly Thermally Stable and Robust Enantiopure NNN-Scorpionate Zirconium Initiators for the Controlled Ring-Opening Polymerization of *rac*-Lactide

Antonio Otero, ^{*[a]} Juan Fernández-Baeza, ^{*[a]} Andrés Garcés, ^[b] Luis F. Sánchez-Barba, ^{*[b]} Agustín Lara-Sánchez, ^[a] Jaime Martínez-Ferrer, ^[a] María P. Carrión, ^[a] Ana M. Rodríguez^[a]

^[a] Prof. Dr. Antonio Otero, Dr. Juan Fernández-Baeza, Dr Agustín Lara-Sánchez, Dr. Ana M. Rodríguez, Dra. Maria P. Carrión, Dr. Jaime Martínez-Ferrer.

Universidad de Castilla-La Mancha, Departamento de Química Inorgánica, Orgánica y Bioquímica, Centro de Innovación en Química Avanzada (ORFEO-CINQA) Campus Universitario, 13071-Ciudad Real, Spain.

E-mail: antonio.otero@uclm.es; juan.fbaeza@uclm.es;

^[b] Dr. Luis F. Sánchez-Barba, Dr. Andrés Garcés

Universidad Rey Juan Carlos, -Departamento de Bilogía y Geología, Física y Química Inorgánica, Móstoles-28933-Madrid, Spain.

E-mail: luisfernando.sanchezbarba@urjc.es

Table of Contents

1) Ring-opening polymerization of L-/rac-lactide details:

2)

Figure S1. Plot of PLA M_n and molecular weight distribution values (PDI) as a function of <i>rac</i> -				
lactide conversion (%)				
Figure S2. Selected area of MALDI-ToF mass spectrum of poly(<i>rac</i> -lactide) synthesized using				
$[Zr(NMe_2)_3(\kappa^3-R,R-fbpza)]S4$				
Figure S3. ¹ H NMR spectra of the homodecoupled CH resonance of poly(L-lactide) prepared				
from catalyst 2				
Figure S4. ¹ H NMR spectra of the homodecoupled CH resonance of poly(rac-lactide)				
synthesized using catalyst 6				
X-ray diffraction experimental details:				
Table S1. Crystal data and structure refinement for 6				

3)	References	

Figure S1. Plot of PLA M_n and molecular weight distribution values (PDI) as a function of monomer conversion (%) for the polymerization of *rac*-LA initiated by [Zr(NMe₂)₃(κ^3 -R,R-fbpza)]; [*rac*-LA]₀/[Zr]₀ = 100, toluene, 70 °C (Table 2, entries 3–6, R² = 0.9894).

Figure S2. Selected area of the MALDI-ToF mass spectrum of a PLA sample obtained on using $[Zr(NMe_2)_3(\kappa^3-R,R-fbpza)]$ with $[rac-LA]_0/[Zr]_0 = 30$, 77% conversion; theoretical molecular weights calculated according to the equation: $M_n = (DP_n \times M_{wLA}) + M_w t_{BuH} + M_{wNa}$, where DP_n is the degree of polymerization, $M_{wLA} = 144.13 \text{ g} \cdot \text{mol}^{-1}$, $M_{wHNMe2} = 45.07 \text{ g} \cdot \text{mol}^{-1}$ and $M_{wNa} = 23.09 \text{ g} \cdot \text{mol}^{-1}$.

The distribution in the spectrum indicates the existence of a single family of polymer chains capped by – $CH(CH_3)OH$ and $(CH_3)_2$ –N–OC(O)– *termini*, corresponding to oligomers of formula $H(OCHMeCO)_{2n}(N-(CH_3)_2)\cdot Na^+$ (n = 8 to 23) with consecutive peaks separated by increments of 144 Da. Moreover, neither intermolecular ester-exchange (transesterification) reactions nor cyclic oligomers were detected.

Figure S3. ¹H NMR spectra (400 MHz, 298 K, CDCl₃) of the homodecoupled *CH* resonance of poly(Llactide) prepared using [Zr(OCHMeEt)₃(κ^{3} -*R*,*R*-fbpza)] (2) ([Zr]₀ = 90 μ mol and [L-LA]₀/[Zr]₀ = 300, 130

- °C, 1 min). The tacticity
- of the polymer was
- assigned using the

REVISED VERSION methine signals with homonuclear decoupling, as described by Hillmyer and co-workers.¹

Figure S4. ¹H NMR spectra (400 MHz, 298 K, CDCl₃) of the homodecoupled C*H* resonance of poly(*rac*-lactide) prepared employing [$Zr(S4-^tBuPh)_3(\kappa^3-R,R-fbpza)$] (6) in toluene at 70 °C for 24 h (Table 2 entry 17). The tacticity of the polymer was assigned using the methine signals with homonuclear decoupling, as described by Hillmyer and co-workers.¹

Empirical formula	C ₅₉ H ₇₁ FN ₅ O _{0.50} S ₃ Zr
Formula weight	1064.60
Temperature (K)	240(2)
Wavelength (Å)	0.71073
Crystal system	Monoclinic
Space group	P 2 ₁
a(Å)	9.9418(3)
b(Å)	28.5201(8)
c(Å)	10.9256(3)
β(°)	102.641(2)
Volume(Å ³)	3022.8(1)
Ζ	2
Density (calculated) (g/cm ³)	1.170
Absorption coefficient (mm ⁻¹)	0.328
F(000)	1122
Crystal size (mm ³)	0.19 x 0.15 x 0.12
Index ranges	$-11 \le h \le 11, -33 \le k \le 33, -12 \le l \le 11$
Reflections collected	15981
Independent reflections	9418 [R(int) = 0.1104]
Data / restraints / parameters	9418 / 58 / 631
Goodness-of-fit on F ²	1.001
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0854, $wR2 = 0.1767$
Absolute structure parameter	0.12(11)
Largest diff. peak / hole, e.Å $^{-3}$	0.612 and -0.364
$R = \overline{\Sigma F_{o} - F_{c} / \Sigma F_{o} }$. $WR = \{\Sigma W(F_{o}^{2} - F_{c}^{2})^{2} / \Sigma W(F_{o}^{2} -$	$\overline{(F_o^2)^2}^{1/2}$. ^c GOF = $\{\Sigma [w((F_o^2 - F_c^2)^2)/(n-p)\}^{1/2}$, w
n = number of reflections and $p =$ total number	r of parameters refined.

Table S1. Crystal data and structure refinement for $6 \times 0.25C_4H_8O$.

References

 M. T. Zell, B. E. Padden, A. J. Paterick, K. A. M. Thakur, R. T. Kean, M. A. Hillmyer, E. J. Munson, *Macromolecules*, 2002, 35, 7700–7707.