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Experimental 

  All manipulations were performed using standard Schlenk-line techniques or in an MBraun dry box under 

Ar or N2 atmosphere (< 1 ppm O2 /H2O).  

  
Chemicals 

  Bis(cyclopentadienyl)titanium(IV) dichloride, [Cp2TiCl2], was purchased from Tokyo Chemical Industry 

Co., Ltd. Bis(pentamethylcyclopentadienyl)titanium(IV) dichloride, [Cp*2TiCl2], was purchased from Wako 

Pure Chemical Industries Ltd. Bis(cyclopentadienyl)vanadium(IV) dichloride, [Cp2VCl2], was purchased from 

Sigma-Aldrich. These reagents were used after recrystallization from hexane.  

1-Butyl-1-methylpyrrolidinium tris(pentafluoroethyl)trifluorophosphate, Pyr4FAP,1 was purchased from 

Merck Ltd. and purified referring to previous literature (see purification of ionic liquid section).2  KC8 was 

prepared according to the literature.3  Solvents were purified by the method of Grubbs,4 where the solvents 

were passed over columns of activated alumina and supported copper catalyst supplied by ultimate 

purification system (Glass Contour System, NIKKO HANSEN & CO., LTD), transferred to the glovebox 

without exposure to air, and stored over molecular sieves 4Å.  Bis[(dicyclopentadienyl)titanium(III) 

chloride], [(Cp2TiCl)2], and bis[(dipentamethylcyclopentadienyl)titanium(III) chloride], [Cp*2TiCl], were 

synthesized according to the literature.5, 6 

Purification of ionic liquid 

  Pyr4FAP (50 g) was dissolved in distilled EtOH (100 mL), and to the solution was added an activated 

charcoal (5g, Sigma-Aldrich).  And then, the activated charcoal was remove by filtrate and the solvent was 

removed by evaporator.  If the color was not colorless, the purification was repeated using the activated 

charcoal. After the purification was finished, Pyr4FAP was vacuumed at 80℃ for 3 days and dried over 

molecular sieves (4 Å) for 1 week. 

 

Instrumentation 

  Electrochemistry was studied using a potentiostat (BAS, ALS/600).  UV-vis/NIR absorption spectra were 

measured with a Jasco V-770 spectrophotometer using a 1 mm light-pass-length quartz cell.  X-band EPR 

spectra of frozen solution were recorded at 77 K using JEOL RE-1X ESR spectrometer.  
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Measurement of EPR spectra under 14N2 atmosphere 

  The sample preparation was carried out in the glove box under 14N2 atmosphere.  Pyr4FAP, which 

was stirred for 1 week under 14N2, was used for EPR measurement.  The concentration of 
[(Cp2TiCl)2] was adjusted to 1 mM for each solvent.  EPR tube (φ4 mm) with a ground glass joint 

(15/25) was employed as the glass stopper (15/25) for measurement under 14N2.  
 
 

Measurement of EPR spectra under 15N2 atmosphere 

  The sample preparation was carried out in the glove box under Ar atmosphere. Pyr4FAP used was 

vacuumed overnight, and then, stirred for 1 week under 15N2 before use.  The 15N2 gas (99.9 

Atom %), which was purchased from SI Science Co., Ltd., was purified by passing the column 

containing KC8 (see Fig. S1), and used after replacement of the gas from Ar to 15N2 by using vacuum 

line equipped in the glovebox.  The replacement is carried out by connecting the gas outlet with 

vacuum line and the gas inlet with 15N2 gas cylinder.  The concentration of [(Cp2TiCl)2] was 
adjusted to 1 mM for each solvent.  EPR tube (φ4 mm) with a ground glass joint (15/25) was used 

with a three-way glass stopcock (15/25) for measurement under 15N2 atmosphere.  After adding the 

sample in EPR tube, the atmosphere in EPR tube was replaced from Ar to 15N2. 

 
 

 
 

 

 

 

 

 

 

Fig. S1 The picture of a gas purification column for 15N2 
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Fig. S2 EPR spectrum of 0.5 mM [(Cp2TiCl)2] in toluene.  Experimental conditions are as follows: 

temperature T = 77 K, frequency n = 9.142 GHz, power 1 mW, and modulation 0.63 mT.  The 

observed spectrum (blue) and simulation (red) are as follows; g values estimated from the spectrum 

are as follows; gx = 1.998, gy = 1.980, gz =1.950, and simulated g values are gx = 1.998, gy = 1.980, 

gz =1.950. 
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Fig. S3 EPR spectrum of 1 mM [(Cp2TiCl)2] in 0.2 M Pyr4FAP/THF. Experimental conditions are as 

follows; temperature T = 77 K, frequency n = 9.125 GHz, power 1 mW, and modulation 0.63 mT.  

The observed spectrum (blue) and simulation (red) are as follows; g values estimated from spectrum 

are gx = 1.997, gy = 1.977, gz =1.946, and simulated g values are gx = 1.997, gy = 1.979, gz =1.950.   
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Fig. S5 UV-vis/NIR spectrum of 5 mM [(Cp2TiCl)2] in Pyr4FAP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. S6 UV-vis/NIR spectrum of 5 mM [(Cp2TiCl)2] in 0.2 M Pyr4FAP/THF 
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Fig. S7 UV-vis/NIR spectrum of 5 mM [(Cp2TiCl)2] in toluene 
 
 
 
 
 

Fig. S8 UV-vis/NIR spectrum of 5 mM [Cp*
2TiCl] in toluene 
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Fig. S9 UV-vis/NIR spectrum of 5 mM [Cp2VCl2] in toluene 
 
 
 
 
 
 

Compound Medium lmax/ nm (e/M-1cm-1) Ref. 

(Cp2TiCl)2 

Pyr4FAP 
449 (930), 697 (89), 817 (77), 

1167 (28) 
this work 

0.2 M Pyr4FAP/THF 
452 (120), 751 (88), 817 (86), 

1138 (46) 
this work 

THF 456 nm(a) 7 

Toluene 
456 (1300), 690 (98), 813 (82), 

1164 (23) 
this work 

Cp*2TiCl Toluene 558 (110), 640 (77) this work 

Cp*2TiCl Toluene 560 (144) 6 

Cp2VCl2 Toluene 755 (82), 905 (93) this work 

(a) e values are noted in M-1·cm-1 in the parentheses. 

 

 

 

  

Table S1. Summary of UV-vis/NIR spectra  
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Fig. S10 UV-vis/NIR spectra of 2, 4, 8, and 12 mM [(Cp2TiCl)2] in Pyr4FAP 

 

 

   

 

Fig. S11 UV-vis/NIR spectra of 2, 4, 8, and 12 mM [(Cp2TiCl)2] in toluene 
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Fig. S12 UV-vis/NIR spectra of 2, 4, 8, and 12 mM [(Cp2TiCl)2] in THF 
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