Electronic Supplementary Information

Direct Synthesis of Hydrothermally Stable Ge-IWR Zeolite

Wen Hua Fu,^{a,b} Zhiqing Yuan,^a Zhendong Wang,^a Yangdong Wang,^a

Weimin Yang,^{a*} and Ming-Yuan He^b

^aState Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, China

^bShanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China

*W. Yang. E-mail: yangwm.sshy@sinopec.com

Figures and Tables

Fig. S1 ²⁷Al MAS NMR spectra of Al-IWR-50 zeolite: as-made (a) and calcine (b).

Fig. S2 XRD patterns of Al-free-IWR zeolite: calcined (a), HNO₃ treated (b) and Al-IWR-50 zeolite: calcined (c), HNO₃ treated (d).

Fig. S3 SEM images of Al-free-IWR (top) and Al-IWR-50 (below) zeolites: calcined (a), steamed (b) immersed (c).

Fig. S4 Pore size distribution curves of Al-free-IWR (left) and Al-IWR-50 (right) calculated by NLDFT model: calcined (a), steamed (b) and immersed (c).

Fig. S5 N_2 adsorption-desorption isotherms (left) and NLDFT cumulative pore volume plots over the entire pore width range (right) of HNO₃ treated Al-free-IWR (a) and Al-IWR-50 (b).

Table S1 Survey of synthesis of IWR zeolites (423 K, 7 d).

Table S2 Crystallographic data of Al-IWR-50.

Table S3 Atomic coordinates for Al-IWR-50 with e.s.d.'s in parentheses as obtained from Rietveld refinement.

 Table S4 Results of alkylation of benzene with ethylene over Al-IWR-50.

Table S5 Textural properties of HNO₃ treated Al-free-IWR and Al-IWR-50.

Fig. S1 ²⁷Al MAS NMR spectra of Al-IWR-50 zeolite: as-made (a) and calcine (b).

Fig. S2 XRD patterns of Al-free-IWR zeolite: calcined (a), HNO3 treated (b) and Al-IWR-50zeolite:calcined(c),HNO3treated(d).

Al-free-IWR

Al-IWR-50

Fig. S3 SEM images of Al-free-IWR (top) and Al-IWR-50 (below) zeolites: calcined (a), steamed (b) immersed (c).

Fig. S4 Pore size distribution curves of Al-free-IWR (left) and Al-IWR-50 (right) calculated by NLDFT model: calcined (a), steamed (b) and immersed (c).

Fig. S5 N_2 adsorption-desorption isotherms (left) and NLDFT cumulative pore volume plots over the entire pore width range (right) of HNO₃ treated Al-free-IWR (a) and Al-IWR-50 (b).

Si/Ge	H ₂ O/Si	SiO ₂ /Al ₂ O ₃ Zeolite Phase		
10	5.5	00	AST	
5	5.5	œ	CDO	
2	5.5	œ	IWR + AST	
10	5.5	250	IWR + CDO	
5	5.5	250	IWR + CDO	
2	5.5	250	IWR	
2	5.5	100	IWR	
2	5.5	50	IWR	
2	5.5	25 ^b	LEV	
1	5.5	250	IWR	
0.5	5.5	250	IWR	
0.2	5.5	250	IWR	
5	10	250	MFI	
2	10	250	MFI	
5	15	250	MFI	
2	15	250	MFI	
^a The molar ratio of DEDMAOH/Si was fixed at 0.5.				

Table S1 Survey of synthesis of IWR zeolites $(423 \text{ K}, 7 \text{ d})^a$.

^b Isoproprate was used as aluminum source.

Table S2 Crystallographic data of Al-IWR-50. Chemical composition: $H_{1.64}[Si_{41.86}Ge_{12.5}Al_{1.64}O_{112}]$ Refined composition: $Si_{42.57}Ge_{13.43}O_{112}$ Unit cell: Space group *Cmmm* (No. 65) a = 21.3126(4) Åb = 13.5299(9) Åc = 12.6615(2) Å $V = 3651.0(75) \text{ Å}^3$ Refined 2 θ range: 9-72 $R_{wp} = 0.1079$ $R_p = 0.0854$ Chi² = 3.122

Atom	Multiplicity	x/a	y/b	z/c	Occupancy
Si1	16 <i>r</i>	0.07454(5)	0.1113(8)	0.3710(3)	0.436(1)
Ge1	16 <i>r</i>	0.07454(5)	0.1113(8)	0.3710(3)	0.563(9)
Si2	16 <i>r</i>	0.1487(8)	0.1987(9)	0.19129(1)	1.0
Si3	16 <i>r</i>	0.2807(2)	0.1098(7)	0.1290(3)	0.968(9)
Ge3	16 <i>r</i>	0.2807(2)	0.1098(7)	0.1290(3)	0.031(1)
Si4	8 <i>p</i>	0.07282(5)	0.1211(4)	0	0.511(0)
Ge4	8 <i>p</i>	0.07282(5)	0.1211(4)	0	0.489(0)
01	16 <i>r</i>	0.1057(8)	1.1708(6)	0.0950(11)	1.0
O2	4 <i>i</i>	0	0.1238(2)	0	1.0
03	4g	0.0885(20)	0	0	1.0
O4	8 <i>q</i>	0.1032(3)	0.1108(3)	0.5	1.0
05	80	0.0763(83)	0	0.3382(4)	1.0
06	16 <i>r</i>	0.1236(4)	0.1878(2)	0.3050(6)	1.0
O7	8 <i>n</i>	0	0.1421(6)	0.3349(4)	1.0
08	16 <i>r</i>	0.2224(2)	0.1252(6)	0.1757(5)	1.0
09	16 <i>r</i>	0.1676(7)	0.3115(6)	0.1723(8)	1.0
O10	80	0.2965(1)	0	0.1656(3)	1.0
011	8 <i>p</i>	0.2710(2)	0.1276(2)	0	1.0

Table S3 Atomic coordinates for Al-IWR-50 with e.s.d.'s in parentheses as obtained from Rietveld refinement.

Time on stream (min)	Conversion (%) –	Selectivity (%)		
Time-on-stream (mm)		Ethylbenzene	Ethyl group	
60	79.1	72.6	100	
120	77.8	72.2	100	
180	76.8	72.1	100	
240	74.9	72.2	100	
300	72.8	72.4	100	
360	70.0	72.8	100	
420	67.4	73.2	100	
480	63.8	73.5	100	

 Table S4 Results of alkylation of benzene with ethylene over Al-IWR-50.

Reaction conditions: Temperature 473 K, pressure 3.5 MPa, WHSV 6 h⁻¹, Benzene/Ethylene 3.0.

Sample		Surface Area (m ² g ⁻¹)		Pore Volume (cm ³ g ⁻¹)		
		$S_{ m BET}{}^{ m a}$	$S_{\mathrm{m.}}{}^{\mathrm{b}}$	$V_{\rm t.}{}^{\rm c}$	$V_{\rm m.}{}^{\rm b}$	$V_{\text{m-NLDFT}}^{\text{d}}$
Al-free-IWR	HNO ₃ treated	379	346	0.34	0.15	0.13
Al-IWR-50	HNO ₃ treated	487	441	0.54	0.18	0.18

Table S5 Textural properties of HNO₃ treated Al-free-IWR and Al-IWR-50.

^aBET surface area calculated from the N₂ adsorption data using the BET equation, ^bMicropore surface area and micropore volume estimated using the *t*-plot method, ^cSingle-point total pore volume at $P/P_0 = 0.99$, ^dmicropore volume calculated from NLDFT cumulative pore volume for pores below 2 nm in diameter.