Electronic Supporting Information Zinc hydridotriphenylborates supported by a neutral macrocyclic polyamine

Debabrata Mukherjee, Ann-Kristin Wiegand, Thomas P. Spaniol, and Jun Okuda* Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.

Table of Contents

General remarks	S1
Synthetic procedures and spectroscopic data for 1-11	S2
Hydroboration catalysis using 1	S21
Crystal structure analysis	S25
References	S27

General remarks.

All reactions were performed under a dry argon atmosphere using standard Schlenk techniques or under argon atmosphere in a glovebox, unless otherwise indicated. Prior to use, glassware were dried overnight at 130 °C and solvents were dried, distilled, and degassed using standard methods. [Zn{N(SiHMe₂)₂}₂],^{S1} Me₄TACD,^{S2} KHBPh₃^{S3} were synthesized following literature procedures. ¹H NMR spectrum of isolated KHBPh₃ in THF-d₈ suggests the composition as [KHBPh₃(thf)_{0.625}]. HN(SiHMe₂)₂ was purchased from Alfa Aesar and dried and degassed prior storing over molecular sieves inside the glovebox. BPh₃ (95%) was purchased from abcr and purified by sublimation before use. ${}^{1}H$, ${}^{13}C{}^{1}H$, ${}^{11}B$, and ${}^{29}Si{}^{1}H$ NMR spectra were recorded on a Bruker Avance-III spectrometer at ambient temperature unless otherwise mentioned. Chemical shifts (δ in ppm) in the ¹H and ¹³C{¹H} NMR spectra were referenced to the residual signals of the deuterated solvents. Abbreviations for NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), sep (septet), br (broad). FT-IR spectra were recorded on KBr pellets using an AVATAR 360 FT-IR spectrometer. Elemental analyses were performed on an elementar vario EL machine. X-ray diffraction data were collected on a Bruker APEX II diffractometer. Single crystal diffraction data were reported in crystallographic information files (cif) accompanying this document.

Synthetic procedures and spectroscopic data for 1-11. [(L)Zn{N(SiHMe₂)₂}][HBPh₃] (1).

A solution of $[Zn{N(SiHMe_2)_2}_2]$ (0.289 g, 0.876 mmol) and L (0.200 g, 0.876 mmol) in 5 mL of THF was stirred for 10 min. BPh₃ (0.212 g, 0.876 mmol) in 2 mL of THF was added to this mixture and stirred for additional 24 h. A small amount of white solid precipitated during this time which was removed by filtration. The filtrate was evaporated under reduced pressure to give a colorless solid. The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum to afford analytically pure **1** (0.387 g, 0.578 mmol, 66%) as a colorless powder. ¹H NMR (400 MHz, THF-*d*₈): δ 7.30 (m, 6 H, *o*-Ph), 6.88 (m, 6 H, *m*-Ph), 6.72 (m, 3 H, *p*-Ph), 4.50 (m, 2 H, Si*H*Me₂), 3.81-3.23 (q, ¹*J*_{BH} = 76 Hz, 1 H, B*H*), 2.68 (m, 8 H, NC*H*₂), 2.48 (s, 12 H, NMe), 2.39 (m, 8 H, NC*H*₂), 0.13 (d, ³*J*_{HH} = 3.01 Hz, 12 H, Si*HMe*₂). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 136.3 (*o*-Ph), 126.1 (*m*-Ph), 121.9 (*p*-Ph), 54.3 (*C*H₂), 45.4 (NMe), 4.6 (SiHMe₂). ¹¹B NMR (128 MHz, THF-*d*₈): δ -7.9 (d, ¹*J*_{BH} = 79 Hz). ²⁹Si NMR (79.5 MHz, THF-*d*₈): δ -15.1. IR (KBr, cm⁻¹): 2221-2083 (v_{SiH} and v_{BH}). Anal. Calc. for C₃₅H₅₈BN₅Si₂Zn: C, 61.02; H, 8.74; N, 10.46. Found: C, 61.71; H, 8.01; N, 10.10.

Figure 1. ¹H NMR spectrum of $[(L)Zn{N(SiHMe_2)_2}][HBPh_3]$ (1) in THF-d₈.

Figure 4. ²⁹Si{¹H} NMR spectrum of $[(L)Zn{N(SiHMe_2)_2}][HBPh_3]$ (1) in THF-d₈.

Figure 5. Solid-state IR (KBr) spectrum of [(L)Zn{N(SiHMe₂)₂}][HBPh₃] (1).

[(L)ZnCl]Cl (2).

A solution of ZnCl₂ (0.015 g, 0.109 mmol) in 2 mL of THF was layered on top of solution of L (0.025 g, 0.109 mmol) in 2 mL of THF. A colorless solid precipitated within 30 min. The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum to give analytically pure **2** (0.035 g, 0.097 mmol, 89%) as a colorless powder. ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.95 (m, 8 H, NC*H*₂), 2.64 (m, 8 H, NC*H*₂), 2.44 (s, 12 H, N*Me*). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆): δ 52.2 (*C*H₂), 44.0 (N*Me*). Anal. Calc. for C₁₂H₂₈Cl₂N₄Zn: C, 39.52; H, 7.74, N, 15.36. Found: C, 39.96; H, 7.48; N, 15.17.

Figure 6. ¹H NMR spectrum of [(L)ZnCl][Cl] (2) in DMSO- d_6 .

Figure 8. Solid-state IR (KBr) spectrum of [(L)ZnCl][Cl] (2).

[(L)ZnBr]Br (3).

Starting from ZnBr₂ (0.025 g, 0.109 mmol) and L (0.025 g, 0.109 mmol) **3** (0.043 g, 0.096 mmol, 87%) was prepared in a similar fashion as **2** and isolated as a colorless powder. ¹H NMR (400 MHz, DMSO- d_6): δ 2.97 (m, 8 H, NCH₂), 2.65 (m, 8 H, NCH₂), 2.45 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, DMSO- d_6): δ 52.2 (CH₂), 44.5 (NMe). Anal. Calc. for C₁₂H₂₈Br₂N₄Zn: C, 31.78; H, 6.22, N, 12.35. Found: C, 31.97; H, 6.10; N, 12.33.

Figure 9. ¹H NMR spectrum of [(L)ZnBr][Br] (3) in DMSO- d_6 .

Figure 10. ${}^{13}C{}^{1}H$ NMR spectrum of [(L)ZnBr][Br] (3) in DMSO- d_6 .

Figure 11. Solid-state IR (KBr) spectrum of [(L)ZnBr][Br] (3).

[(L)ZnI][I] (4).

Starting from ZnI₂ (0.035 g, 0.109 mmol) and L (0.025 g, 0.109 mmol) **4** (0.050 g, 0.091 mmol, 84%) was prepared in a similar fashion as **2** and isolated as a colorless powder. ¹H NMR (400 MHz, DMSO-*d*₆): δ 2.98 (m, 8 H, NCH₂), 2.75 (m, 8 H, NCH₂), 2.46 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, DMSO-*d*₆): δ 52.2 (*C*H₂), 45.4 (NMe). **4** is sparingly soluble in THF, but NMR spectroscopic characterization was possible in THF-*d*₈ and in DMSO-*d*₆. ¹H NMR (400 MHz, THF-*d*₈): δ 3.72 (m, 8 H, NCH₂), 2.56 (m, 8 H, NCH₂), 2.51 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 54.5 (*C*H₂), 46.3 (NMe). Anal. Calc. for C₁₂H₂₈I₂N₄Zn: C, 26.32; H, 5.15, N, 10.23. Found: C, 26.28; H, 5.15; N, 10.24.

Figure 13. ¹³C{¹H} NMR spectrum of [(L)ZnI][I] (4) in DMSO- d_6 .

Figure 14. ¹H NMR spectrum of [(L)ZnI][I] (4) in THF- d_8 .

Figure 15. ${}^{13}C{}^{1}H$ NMR spectrum of [(L)ZnI][I] (4) in THF- d_8 .

Figure 16. Solid-state IR (KBr) spectrum of [(L)ZnI][I] (4).

[(L)ZnCl][HBPh3] (5).

ZnCl₂ (0.015 g, 0.109 mmol) and L (0.025 g, 0.109 mmol) was stirred in 2 mL of THF for 30 min to give a colorless suspension. To this mixture, solid [KHBPh₃(thf)_{0.625}] (0.036 g, 0.109 mmol) was added and stirred for additional 18 h. The suspension was filtered and the filtrate was evaporated under reduced pressure to give a colorless solid. The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum to afford analytically pure **5** (0.052 g, 0.091 mmol, 83%) as a white powder. ¹H NMR (400 MHz, THF-*d*₈): δ 7.30 (m, 6 H, *o*-Ph), 6.88 (m, 6 H, *m*-Ph), 6.72 (m, 3 H, *p*-Ph), 3.81-3.23 (q, ¹*J*_{BH} = 76 Hz, 1 H, B*H*), 2.76 (m, 8 H, NC*H*₂), 2.45 (s, 12 H, N*Me*), 2.40 (m, 8 H, NC*H*₂). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 136.2 (*o*-Ph), 126.2 (*m*-Ph), 122.0 (*p*-Ph), 53.6 (*C*H₂), 44.4 (N*Me*). ¹¹B NMR (128 MHz, THF-*d*₈): δ -7.9 (d, ¹*J*_{BH} = 77 Hz). IR (KBr, cm⁻¹): 2184-2000 (v_{BH}). Anal. Calc. for C₃₀H₄₄BClN₄Zn: C, 62.96; H, 7.75, N, 9.79. Found: C, 62.76; H, 8.03; N, 9.23.

Figure 17. ¹H NMR spectrum of $[(L)ZnCl][HBPh_3]$ (5) in THF- d_8 .

Figure 18. ${}^{13}C{}^{1}H$ NMR spectrum of [(L)ZnCl][HBPh₃] (5) in THF- d_8 .

---7.55 ---8.15

Figure 20. Solid-state IR (KBr) spectrum of [(L)ZnCl][HBPh₃] (5).

[(L)ZnBr][HBPh3] (6).

Starting from ZnBr₂ (0.025 g, 0.109 mmol), L (0.025 g, 0.109 mmol), and [KHBPh₃(thf)_{0.625}] (0.036 g, 0.109 mmol) **6** (0.055 g, 0.089 mmol, 82%) was prepared in a similar fashion as **5** and isolated as a colorless powder. ¹H NMR (400 MHz, THF- d_8): δ 7.30 (m, 6 H, *o*-Ph), 6.88 (m, 6 H, *m*-Ph), 6.72 (m, 3 H, *p*-Ph), 3.82-3.24 (q, ¹J_{BH} = 76 Hz, 1 H, BH), 2.79 (m, 8 H, NCH₂), 2.43 (m, 8 H, NCH₂), 2.40 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 136.2 (*o*-Ph), 126.2 (*m*-Ph), 122.0 (*p*-Ph), 53.6 (CH₂), 45.0 (NMe). ¹¹B NMR (128 MHz, THF- d_8): δ -7.8 (d, ¹J_{BH} = 77 Hz). IR (KBr, cm⁻¹): 2188-1999 (v_{BH}). Anal. Calc. for C₃₀H₄₄BBrN₄Zn: C, 58.42; H, 7.19, N, 9.08. Found: C 58.88; H, 7.42; N, 8.51.

Figure 22. ¹³C{¹H} NMR spectrum of $[(L)ZnBr][HBPh_3]$ (6) in THF- d_8 .

Chemical Shift (ppm)

Figure 24. Solid-state IR (KBr) spectrum of [(L)ZnBr][HBPh₃] (6).

[(L)ZnI][HBPh3] (7).

Starting from ZnI₂ (0.035 g, 0.109 mmol), L (0.025 g, 0.109 mmol), and [KHBPh₃(thf)_{0.625}] (0.036 g, 0.109 mmol) **7** was prepared in a similar fashion as **5** and isolated as a colorless powder in a similar fashion (0.053 g, 0.080 mmol, 73%). ¹H NMR (400 MHz, THF- d_8): δ 7.31 (m, 6 H, *o*-Ph), 6.89 (m, 6 H, *m*-Ph), 6.73 (m, 3 H, *p*-Ph), 3.82-3.25 (q, ¹ J_{BH} = 76 Hz, 1 H, B*H*), 2.81 (m, 8 H, NC*H*₂), 2.47 (m, 8 H, NC*H*₂), 2.42 (s, 12 H, N*Me*). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 136.2 (*o*-Ph), 126.2 (*m*-Ph), 122.0 (*p*-Ph), 53.5 (*C*H₂), 46.0 (N*Me*). ¹¹B NMR (128 MHz, THF- d_8): δ –7.8 (d, ¹ J_{BH} = 77 Hz). IR (KBr, cm⁻¹): 2205-2018 (v_{BH}). Anal. Calc. for C₃₀H₄₄BIN₄Zn: C, 54.28; H, 6.68, N, 8.55. Found: C, 54.48; H, 7.01; N, 8.97.

Figure 25. ¹H NMR spectrum of $[(L)ZnI][HBPh_3]$ (7) in THF- d_8 .

Figure 26. ¹³C $\{^{1}H\}$ NMR spectrum of [(L)ZnI][HBPh₃] (7) in THF- d_8 .

Figure 27. ¹¹B NMR spectrum of $[(L)ZnI][HBPh_3]$ (7) in THF- d_8 .

Figure 28. Solid-state IR (KBr) spectrum of [(L)ZnI][HBPh₃] (7).

[(L)Zn{N(SiHMe₂)₂}][HCO₂BPh₃] (8).

In a 25 mL Schlenk tube a solution of **1** (0.045 g, 0.067 mmol) 1 mL of THF was degassed following three freeze-pump-thaw cycles. The head space was then filled with CO₂ (1 atm). After 10 min, all the volatiles were removed under reduced pressure to give a colorless solid. The solid was washed with *n*-pentane (3×5 mL) and dried under vacuum to afford analytically pure **8** (0.039 g, 0.055 mmol, 81%) as a colorless powder. ¹H NMR (400 MHz, THF-*d*₈): δ 8.33 (s, 1 H, *H*CO₂), 7.28 (m, 6 H, *o*-Ph), 6.99 (m, 6 H, *m*-Ph), 6.88 (m, 3 H, *p*-Ph), 4.55 (m, 2 H, Si*H*Me₂), 2.99 (m, 8 H, NC*H*₂), 2.53 (s, 12 H, N*Me*), 2.45 (m, 8 H, NC*H*₂), 0.15 (d, ³*J*_{HH} = 3.08 Hz, 12H, SiH*Me*₂). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 168.9 (HCO₂), 134.6 (*o*-Ph), 126.5 (*m*-Ph), 123.9 (*p*-Ph), 54.4 (CH₂), 45.5 (N*Me*), 4.6 (SiH*Me*₂). ¹¹B NMR (128 MHz, THF-*d*₈): δ 1.2 (br, s). ²⁹Si{¹H} NMR (79.5 MHz, THF-*d*₈): δ -13.3. IR (KBr, cm⁻¹): 2227 (v_{SiH}), 2116 (v_{SiH}), 1677 (v_{CO}), 1634 (v_{CO}). Anal. Calc. for C₃₅H₅₈BN₅O₂Si₂Zn: C, 58.94; H, 8.20; N, 9.82. Found: C, 59.17; H, 8.09; N, 10.05.

Figure 29. ¹H NMR spectrum of $[(L)Zn\{N(SiHMe_2)_2\}][HCO_2BPh_3]$ (8) in THF-d₈.

Figure 31. ¹¹B NMR spectrum of $[(L)Zn{N(SiHMe_2)_2}][HCO_2BPh_3]$ (8) in THF- d_8 .

Figure 32. ²⁹Si $\{^{1}H\}$ NMR spectrum of [(L)Zn $\{N(SiHMe_2)_2\}$][HCO₂BPh₃] (8) in THF-d₈.

Figure 33. Solid-state IR (KBr) spectrum o f [(L)Zn{N(SiHMe₂)₂}][HCO₂BPh₃] (8).

[(L)ZnCl][HCO₂BPh₃] (9).

Complex **9** was prepared from **5** (0.027 g, 0.047 mmol) and CO₂ (1 atm) in a similar fashion as **8** and isolated as a colorless solid (0.019 g, 0.031 mmol, 66%). ¹H NMR (400 MHz, THF*d*₈): δ 8.34 (s, 1 H, *H*CO₂), 7.27 (m, 6 H, *o*-Ph), 7.00 (m, 6 H, *m*-Ph), 6.88 (m, 3 H, *p*-Ph), 3.01 (m, 8 H, NCH₂), 2.49 (m, 8 H, NCH₂), 2.43 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, THF-*d*₈): δ 169.0 (*H*CO₂), 134.6 (*o*-Ph), 126.5 (*m*-Ph), 123.9 (*p*-Ph), 53.6 (*C*H₂), 44.5 (N*Me*). ¹¹B NMR (128 MHz, THF-*d*₈): δ 3.3 (br, s). IR (KBr, cm⁻¹): 1672 (v_{CO}). Anal. Calc. for C₃₁H₄₄BClN₄O₂Zn: C, 60.41; H, 7.20, N, 9.09. Found: C, 60.24; H, 7.07; N, 9.52.

Figure 34. ¹H NMR spectrum of $[(L)ZnCl][HCO_2BPh_3]$ (9) in THF- d_8 .

Figure 36. ¹¹B NMR spectrum of $[(L)ZnCl][HCO_2BPh_3]$ (9) in THF- d_8 .

Figure 37. Solid-state IR (KBr) spectrum o f [(L)ZnCl][HCO₂BPh₃] (9).

[(L)ZnBr][HCO₂BPh₃] (10)

Complex **10** was prepared from **6** (0.016 g, 0.026 mmol) and CO₂ (1 atm) as **8** and isolated as a colorless solid (0.019 g, 0.031 mmol, 66%). ¹H NMR (400 MHz, THF- d_8): δ 8.34 (s, 1 H, *H*CO₂), 7.30 (m, 6 H, *o*-Ph), 7.01 (m, 6 H, *m*-Ph), 6.89 (m, 3 H, *p*-Ph), 3.02 (m, 8 H, NCH₂), 2.47 (m, 8 H, NCH₂), 2.42 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 169.0 (HCO₂), 134.6 (*o*-Ph), 126.6 (*m*-Ph), 123.9 (*p*-Ph), 53.6 (CH₂), 45.1 (NMe). ¹¹B NMR (128 MHz, THF- d_8): δ 3.6 (br, s). IR (KBr, cm⁻¹): 1675 (v_{CO}). Anal. Calc. for C₃₁H₄₄BBrN₄O₂Zn: C, 56.35; H, 6.71, N, 8.48. Found: C, 56.33; H, 6.60; N, 8.61.

Figure 38. ¹H NMR spectrum of [(L)ZnBr][HCO₂BPh₃] (10) in THF-d₈.

Figure 39. ¹³C $\{^{1}H\}$ NMR spectrum of [(L)ZnBr][HCO₂BPh₃] (10) in THF- d_8 .

Figure 40. ¹¹B NMR spectrum of $[(L)ZBrl][HCO_2BPh_3]$ (10) in THF- d_8 .

Figure 41. Solid-state IR (KBr) spectrum o f [(L)ZnBr][HCO₂BPh₃] (8).

[(L)ZnI][HCO₂BPh₃] (11)

Complex **11** was prepared from **7** (0.030 g, 0.045 mmol) and CO₂ (1 atm) in a similar fashion as **8** and as a colorless solid (0.024 g, 0.034 mmol, 75%). ¹H NMR (400 MHz, THF- d_8): δ 8.33 (s, 1 H, *H*CO₂), 7.28 (m, 6 H, *o*-Ph), 7.00 (m, 6 H, *m*-Ph), 6.88 (m, 3 H, *p*-Ph), 3.09 (m, 8 H, NCH₂), 2.53 (m, 8 H, NCH₂), 2.45 (s, 12 H, NMe). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 169.2 (HCO₂), 134.6 (*o*-Ph), 126.6 (*m*-Ph), 123.9 (*p*-Ph), 53.6 (*C*H₂), 46.1 (NMe). ¹¹B NMR (128 MHz, THF- d_8): δ 1.4 (br, s). IR (KBr, cm⁻¹): 1679 (v_{CO}). Anal. Calc. for C₃₁H₄₄BIN₄O₂Zn: C, 52.60; H, 6.27, N, 7.92. Found: C, 52.86; H, 6.17; N, 8.26.

Figure 42. ¹H NMR spectrum of $[(L)ZnI][HCO_2BPh_3]$ (11) in THF- d_8 .

Figure 43. ${}^{13}C{}^{1}H$ NMR spectrum of [(L)ZnI][HCO₂BPh₃] (11) in THF- d_8 .

-1.39

Figure 45. Solid-state IR (KBr) spectrum o f [(L)ZnI][HCO₂BPh₃] (11).

Hydroboration catalysis using 1.

The hydroboration catalysis was performed on NMR-scale. A 5 mL aliquot of 0.06 M stock solution of 1,3,5-trimethoxybenzene (internal standard) in THF was prepared (THF:THF- d_8 = 2:1). A Teflon-sealed NMR tube was charged with substrate (0.21 mmol), HBpin (0.21 mmol), **1** (0.021 mmol) and 0.45 mL of the stock solution. Preheated oil bath was used for the catalysis at 60 °C. For CO₂ hydroboration, the reaction mixture in a Teflon-sealed NMR tube was degassed by three freeze-pump-thaw cycles, followed by filling the headspace with CO₂ (1 atm). Reaction progress was monitored by ¹H and ¹¹B NMR spectroscopy and compared with the literature.^{S4}

Figure 46. ¹H NMR spectrum for the hydroboration of benzophenone in THF- d_8 .

Figure 47. ¹¹B NMR spectrum for the hydroboration of benzophenone in THF-*d*₈.

Figure 48. ¹H NMR spectrum for the hydroboration of CO_2 in THF- d_8 .

Figure 49. ¹¹B NMR spectrum for the hydroboration of CO_2 in THF- d_8 .

Figure 50. ¹H NMR spectrum for the hydroboration of *N*-benzylideneaniline in THF- d_8 .

Figure 51. ¹¹B NMR spectrum for the hydroboration of *N*-benzylideneaniline in THF- d_8 .

Figure 52. ¹H NMR spectrum for the hydroboration of pyridine in THF- d_8 .

Figure 53. ¹¹B NMR spectrum for the hydroboration of pyridine in THF- d_8 .

Figure 54. ¹H NMR spectrum for the hydroboration of ethylacetate in THF-*d*₈.

Figure 55. ¹H NMR spectrum for the hydroboration of ethylacetate in THF- d_8 .

Crystal structure analysis.

Single-crystal X-ray diffraction measurements of 4, 7 and 11 were performed on a Bruker AXS diffractometer equipped with an Incoatec microsource and an APEX area detector using MoK α radiation ($\lambda = 0.71073$ Å), multilayer optics and ω -scans. Temperature control was achieved with an Oxford cryostream 700. The SMART program was used for data collection and unit cell determination. Processing of the raw data frame was performed using SAINT+,^{S5} multi scan absorption corrections were applied with SADABS.^{S6} The structures were solved by direct methods (SIR-92).^{S7} The crystal lattice of **4** contains two crystallographically independent molecules of THF that are disordered, one of them around a crystallographic inversion center. Disorder was also found in 7 for the carbon atoms C1-C8 of the ligand Me₄TACD, as well as in **11** for all carbon atoms C1–C12 and all nitrogen atoms N1–N4 of the ligand Me₄TACD and the iodine atom I1. In each case, the disorder could be modeled with split positions. The Refinements were performed against F^2 with the program SHELXL-2013 using all reflections, as implemented in the program system WinGX.^{S8,9} Hydrogen atoms were included as riding on calculated positions with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq.}$ (non-H), except for the atoms bound to boron (H1 in 7 that was localized in a difference Fourier map and refined in its position with isotropic displacement parameters $U_{\rm iso}({\rm H}) = 1.2 U_{\rm eq}({\rm B})$. All non-hydrogen atoms were refined anisotropically. Refinement results are given in Table S1. Graphical representations were performed with the program DIAMOND.^{\$10} CCDC-1539861 (4), -1539862 (7), -1539863 (11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	4	7	11	
chemical formula	$2(C_{12}H_{28}IN_4Zn), 2I,$	$C_{12}H_{28}IN_4Zn,$	$C_{12}H_{28}IN_4Zn,$	
	3(C ₄ H ₈ O)	$C_{18}H_{16}B, C_4H_8O$	$C_{19}H_{16}BO_2$	
fw (g·mol ⁻¹)	1311.42	745.87	707.78	
space group	$P2_{1}/n$	$P2_{1}/c$	Pbca	
crystal size (mm)	0.16×0.22×0.22	0.21×0.27×0.31	0.30×0.30×0.37	
unit cell parameters				
<i>a</i> (Å)	7.936(2)	16.619(5)	17.691(2)	
<i>b</i> (Å)	12.276(3)	9.831(3)	20.439(3)	
<i>c</i> (Å)	25.751(7)	21.995(7)	17.778(2)	
β (°)	94.987(6)	103.977(5)		
(Å ³)	2499.2(11)	3847.2(19)	1552.4(4)	
Z	2	4	8	
<i>T</i> (K)	100(2)	100(2)	100(2)	
$\mu(Mo\;K_{\alpha})\;(mm^{\text{-}1})$	3.470	1.621	1.758	
reflns	22658	31105	56175	
independent reflns	5153 (0.0993)	7201 (0.1128)	6662 (0.1187)	
$(R_{\rm int.})$				
observed reflns	3429	4782	4253	
parameters	238	379	358	
goodness of fit on F^2	1.024	0.929	1.017	
final R indices				
<i>R</i> 1, <i>wR</i> 2	0.0500.0.1257	0.0471.0.0074	0.0500 0.1450	
$[I \ge 2\sigma(I)]$	0.0590, 0.1557	0.0471, 0.0974	0.0390, 0.1438	
<i>R</i> 1, <i>wR</i> 2	0.0040 0.1490	0.0702 0.1040	0.0983, 0.1685	
(all data)	0.0949, 0.1489	0.0792, 0.1048		

 Table S1. Crystal data and structure refinement.

5. References.

- S1 Y. Liang and R. Anwander, *Dalton Trans.*, 2006, 1909-1918.
- S2 J. Coates, D. Hadi and S. Lincoln, Aus. J. Chem., 1982, 35, 903-909.
- S3 N. M. Yoon, K. E. Kim and J. Kang, J. Org. Chem., 1986, 51, 226-229.
- S4 (a) D. Mukherjee, H. Osseili, T. P. Spaniol and J. Okuda, *J. Am. Chem. Soc.*, 2016, 138, 10790-10793; (b) D. Mukherjee, S. Shirase, T. P. Spaniol, K. Mashima and J. Okuda, *Chem. Commun.*, 2016, 52, 13155-13158.
- S5 Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
- S6 Bruker, SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004.
- S7 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.* 1993, 26, 343-350.
- S8 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112–122.
- S9 L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
- S10 K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany, 2017.