Electronic Supporting Information

Zinc hydridotriphenylborates supported by a neutral macrocyclic polyamine

Debabrata Mukherjee, Ann-Kristin Wiegand, Thomas P. Spaniol, and Jun Okuda* Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany.

Table of Contents

General remarks... S 1
Synthetic procedures and spectroscopic data for 1-11..S2
Hydroboration catalysis using 1... 21
Crystal structure analysis... S 25
References.. S 27

General remarks.

All reactions were performed under a dry argon atmosphere using standard Schlenk techniques or under argon atmosphere in a glovebox, unless otherwise indicated. Prior to use, glassware were dried overnight at $130^{\circ} \mathrm{C}$ and solvents were dried, distilled, and degassed using standard methods. $\left[\mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}_{2}\right],{ }^{\mathrm{S} 1} \mathrm{Me}_{4} \mathrm{TACD},{ }^{\mathrm{S} 2} \mathrm{KHBPh}_{3}{ }^{\mathrm{S} 3}$ were synthesized following literature procedures. ${ }^{1} \mathrm{H}$ NMR spectrum of isolated KHBPh_{3} in THF- d_{8} suggests the composition as $\left[\mathrm{KHBPh}_{3}(\mathrm{thf})_{0.625}\right] . \mathrm{HN}\left(\mathrm{SiHMe}_{2}\right)_{2}$ was purchased from Alfa Aesar and dried and degassed prior storing over molecular sieves inside the glovebox. BPh_{3} (95\%) was purchased from abcr and purified by sublimation before use. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\},{ }^{11} \mathrm{~B}$, and ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were recorded on a Bruker Avance-III spectrometer at ambient temperature unless otherwise mentioned. Chemical shifts (δ in ppm) in the ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were referenced to the residual signals of the deuterated solvents. Abbreviations for NMR spectra: s (singlet), d (doublet), t (triplet), q (quartet), sep (septet), br (broad). FT-IR spectra were recorded on KBr pellets using an AVATAR 360 FT-IR spectrometer. Elemental analyses were performed on an elementar vario EL machine. X-ray diffraction data were collected on a Bruker APEX II diffractometer. Single crystal diffraction data were reported in crystallographic information files (cif) accompanying this document.

Synthetic procedures and spectroscopic data for 1-11.

[(L)Zn\{N(SiHMe $\left.\left.)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right]$ (1).

A solution of $\left[\mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}_{2}\right](0.289 \mathrm{~g}, 0.876 \mathrm{mmol})$ and $\mathrm{L}(0.200 \mathrm{~g}, 0.876 \mathrm{mmol})$ in 5 mL of THF was stirred for $10 \mathrm{~min} . \mathrm{BPh}_{3}(0.212 \mathrm{~g}, 0.876 \mathrm{mmol})$ in 2 mL of THF was added to this mixture and stirred for additional 24 h . A small amount of white solid precipitated during this time which was removed by filtration. The filtrate was evaporated under reduced pressure to give a colorless solid. The solid was washed with n-pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to afford analytically pure $1(0.387 \mathrm{~g}, 0.578 \mathrm{mmol}, 66 \%)$ as a colorless powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}): $\delta 7.30$ (m, $6 \mathrm{H}, o-\mathrm{Ph}$), 6.88 (m, $6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), 6.72 ($\mathrm{m}, 3 \mathrm{H}, p-\mathrm{Ph}$), $4.50\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Si} H \mathrm{Me}_{2}\right), 3.81-3.23\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BH}\right), 2.68\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.48(\mathrm{~s}$, $12 \mathrm{H}, \mathrm{NMe}), 2.39\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}\right.$), $0.13\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=3.01 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{SiHMe}\right)^{2} .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 136.3$ (o-Ph), 126.1 ($m-\mathrm{Ph}$), 121.9 ($\left.p-\mathrm{Ph}\right), 54.3\left(\mathrm{CH}_{2}\right), 45.4$ (NMe), 4.6 (SiHMe 2). ${ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta-7.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=79 \mathrm{~Hz}\right.$). ${ }^{29}$ Si NMR (79.5 MHz , THF- d_{8}): δ-15.1. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2221-2083 ($\mathrm{v}_{\mathrm{siH}}$ and v_{BH}). Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{BN}_{5} \mathrm{Si}_{2} \mathrm{Zn}$: C, 61.02; H, 8.74; N, 10.46. Found: C, 61.71; H, 8.01; N, 10.10.

Figure 1. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right](\mathbf{1})$ in THF- d_{8}.

Figure 2. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right](\mathbf{1})$ in THF- d_{8}.

Figure 3. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right](\mathbf{1})$ in THF- d_{8}.

Figure 4. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right](\mathbf{1})$ in THF- \boldsymbol{d}_{8}.

Figure 5. Solid-state IR (KBr) spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HBPh}_{3}\right]$ (1).

[(L) ZnCl$] \mathrm{Cl}$ (2).

A solution of $\mathrm{ZnCl}_{2}(0.015 \mathrm{~g}, 0.109 \mathrm{mmol})$ in 2 mL of THF was layered on top of solution of $\mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol})$ in 2 mL of THF. A colorless solid precipitated within 30 min . The solid was washed with n-pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to give analytically pure $2(0.035 \mathrm{~g}, 0.097 \mathrm{mmol}, 89 \%)$ as a colorless powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$): $\delta 2.95$ (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.64 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.44 (s, $\left.12 \mathrm{H}, \mathrm{NMe}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- d_{6}): $\delta 52.2\left(\mathrm{CH}_{2}\right)$, 44.0 (NMe). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{CI}_{2} \mathrm{~N}_{4} \mathrm{Zn}: \mathrm{C}, 39.52 ; \mathrm{H}, 7.74, \mathrm{~N}$, 15.36. Found: C, 39.96; H, 7.48; N, 15.17.

Figure 6. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}][\mathrm{Cl}](2)$ in $\mathrm{DMSO}-d_{6}$.

Figure 7. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}][\mathrm{Cl}](2)$ in DMSO- d_{6}.

Figure 8. Solid-state IR (KBr) spectrum of [(L)ZnCl][Cl] (2).

$[(\mathrm{L}) \mathrm{ZnBr}] \mathrm{Br}$ (3).

Starting from $\mathrm{ZnBr}_{2}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol})$ and $\mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol}) 3(0.043 \mathrm{~g}$, $0.096 \mathrm{mmol}, 87 \%)$ was prepared in a similar fashion as 2 and isolated as a colorless powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 2.97$ (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.65 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.45 (s, 12 H , NMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, DMSO- d_{6}): $\delta 52.2\left(\mathrm{CH}_{2}\right), 44.5$ (NMe). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{~N}_{4} \mathrm{Zn}$: C, 31.78; H, 6.22, N, 12.35. Found: C, 31.97; H, 6.10; N, 12.33.

Figure 9. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}][\mathrm{Br}]$ (3) in DMSO- d_{6}.

Figure 10. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}][\mathrm{Br}](3)$ in DMSO- d_{6}.

Figure 11. Solid-state $\operatorname{IR}(\mathrm{KBr})$ spectrum of $[(\mathrm{L}) \mathrm{ZnBr}][\mathrm{Br}]$ (3).

[(L)ZnI][I] (4).

Starting from $\mathrm{ZnI}_{2}(0.035 \mathrm{~g}, 0.109 \mathrm{mmol})$ and $\mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol}) 4(0.050 \mathrm{~g}$, $0.091 \mathrm{mmol}, 84 \%)$ was prepared in a similar fashion as 2 and isolated as a colorless powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}): $\delta 2.98$ (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.75 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.46 (s, 12 H , NMe). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , DMSO- d_{6}): $\delta 52.2\left(\mathrm{CH}_{2}\right), 45.4(\mathrm{NMe}) .4$ is sparingly soluble in THF, but NMR spectroscopic characterization was possible in THF- d_{8} and in DMSO- $d_{6} .{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 3.72$ (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.56 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.51 (s, $12 \mathrm{H}, \mathrm{NMe}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , THF- d_{8}): $\delta 54.5\left(\mathrm{CH}_{2}\right), 46.3$ (NMe). Anal. Calc. for $\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{I}_{2} \mathrm{~N}_{4} \mathrm{Zn}$: C, 26.32; H, 5.15, N, 10.23. Found: C, 26.28; H, 5.15; N, 10.24.

Figure 12. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}][\mathrm{I}]$ (4) in $\mathrm{DMSO}-d_{6}$.

Figure 13. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}][\mathrm{I}]$ (4) in DMSO- d_{6}.

Figure 14. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}][\mathrm{II}](4)$ in THF- d_{8}.

Figure 15. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}][\mathrm{I}]$ (4) in THF- d_{8}.

Figure 16. Solid-state IR (KBr) spectrum of [(L)ZnI][I] (4).

[(L)ZnCl][HBPh $\left.{ }_{3}\right]$ (5).

$\mathrm{ZnCl}_{2}(0.015 \mathrm{~g}, 0.109 \mathrm{mmol})$ and $\mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol})$ was stirred in 2 mL of THF for 30 min to give a colorless suspension. To this mixture, solid $\left[\mathrm{KHBPh}_{3}(\mathrm{thf})_{0.625}\right](0.036 \mathrm{~g}, 0.109$ mmol) was added and stirred for additional 18 h . The suspension was filtered and the filtrate was evaporated under reduced pressure to give a colorless solid. The solid was washed with n-pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to afford analytically pure $5(0.052 \mathrm{~g}, 0.091$ mmol, 83\%) as a white powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 7.30(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{Ph}), 6.88$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), 6.72 (m, $3 \mathrm{H}, p-\mathrm{Ph}$), 3.81-3.23 (q, ${ }^{1} \mathrm{~J}_{\mathrm{BH}}=76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BH}$), $2.76(\mathrm{~m}, 8 \mathrm{H}$, NCH_{2}), 2.45 (s, $12 \mathrm{H}, \mathrm{NMe}$), $2.40\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): δ 136.2 (o-Ph), 126.2 ($m-\mathrm{Ph}$), $122.0(p-\mathrm{Ph}), 53.6\left(\mathrm{CH}_{2}\right), 44.4$ (NMe). ${ }^{11} \mathrm{~B}$ NMR (128 MHz , THF- d_{8}): $\delta-7.9\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=77 \mathrm{~Hz}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2184-2000 (v_{BH}). Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{BClN} 4 \mathrm{Zn}$: C, 62.96; H, 7.75, N, 9.79. Found: C, 62.76; H, 8.03; N, 9.23.

Figure 17. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HBPh}_{3}\right]$ (5) in THF- d_{8}.

Figure 18. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HBPh}_{3}\right](5)$ in THF- d_{8}.
in ion

Figure 19. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HBPh}_{3}\right](5)$ in THF- d_{8}.

Figure 20. Solid-state IR (KBr) spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HBPh}_{3}\right](5)$.

[(L)ZnBr][HBPh $\left.{ }_{3}\right]$ (6).

Starting from $\mathrm{ZnBr}_{2}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol}), \mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol})$, and $\left[\mathrm{KHBPh}_{3}(\mathrm{thf})_{0.625}\right.$] $(0.036 \mathrm{~g}, 0.109 \mathrm{mmol}) 6(0.055 \mathrm{~g}, 0.089 \mathrm{mmol}, 82 \%)$ was prepared in a similar fashion as 5 and isolated as a colorless powder. ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF- d_{8}): $\delta 7.30(\mathrm{~m}, 6 \mathrm{H}, \mathrm{o}-\mathrm{Ph}), 6.88$ ($\mathrm{m}, 6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), $6.72(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{Ph}), 3.82-3.24\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=76 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{BH}\right.$), $2.79(\mathrm{~m}, 8 \mathrm{H}$, NCH_{2}), $2.43\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.40(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$): δ 136.2 ($o-\mathrm{Ph}$), 126.2 ($m-\mathrm{Ph}$), $122.0(p-\mathrm{Ph}), 53.6\left(\mathrm{CH}_{2}\right), 45.0(\mathrm{NMe}) .{ }^{11} \mathrm{~B}$ NMR (128 MHz , THF- d_{8}): $\delta-7.8\left(\mathrm{~d},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=77 \mathrm{~Hz}\right)$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2188-1999 (v_{BH}). Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{BBrN}_{4} \mathrm{Zn}$: C, 58.42; H, 7.19, N, 9.08. Found: C 58.88; H, 7.42; N, 8.51.

Figure 21. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HBPh}_{3}\right]$ (6) in THF- d_{8}.

Figure 22. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HBPh}_{3}\right]$ (6) in THF- d_{8}.

Figure 23. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HBPh}_{3}\right](6)$ in THF- d_{8}.

Figure 24. Solid-state IR (KBr) spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HBPh}_{3}\right]$ (6).

[(L)ZnI][HBPh ${ }_{3}$] (7).

Starting from $\mathrm{ZnI}_{2}(0.035 \mathrm{~g}, 0.109 \mathrm{mmol})$, $\mathrm{L}(0.025 \mathrm{~g}, 0.109 \mathrm{mmol})$, and [$\mathrm{KHBPh}_{3}(\text { thf })_{0.625}$] ($0.036 \mathrm{~g}, 0.109 \mathrm{mmol}) 7$ was prepared in a similar fashion as 5 and isolated as a colorless powder in a similar fashion ($0.053 \mathrm{~g}, 0.080 \mathrm{mmol}, 73 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz, THF- d_{8}): δ 7.31 (m, $6 \mathrm{H}, o-\mathrm{Ph}), 6.89(\mathrm{~m}, 6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}), 6.73(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{Ph}), 3.82-3.25\left(\mathrm{q},{ }^{1} \mathrm{~J}_{\mathrm{BH}}=76 \mathrm{~Hz}, 1\right.$ $\mathrm{H}, \mathrm{BH}), 2.81\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.47\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.42(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 136.2$ (o-Ph), 126.2 ($m-\mathrm{Ph}$), $122.0(p-\mathrm{Ph}), 53.5\left(\mathrm{CH}_{2}\right), 46.0(\mathrm{NMe}) .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta-7.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{BH}}=77 \mathrm{~Hz}\right.$). IR (KBr, cm^{-1}): 2205-2018 (v_{BH}). Anal. Calc. for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{BIN} 4 \mathrm{Zn}$: C, 54.28 ; H, 6.68, N, 8.55. Found: C, 54.48; H, 7.01; N, 8.97.

Figure 25. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HBPh}_{3}\right]$ (7) in THF- d_{8}.

Figure 26. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HBPh}_{3}\right]$ (7) in THF- d_{8}.

$$
{\underset{i}{\sim}}_{\sim}^{\sim}
$$

Figure 27. ${ }^{11}$ B NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HBPh}_{3}\right]$ (7) in THF- d_{8}.

Figure 28. Solid-state IR (KBr) spectrum of [(L)ZnI][HBPh_{3}] (7).

$\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8).

In a 25 mL Schlenk tube a solution of $\mathbf{1}(0.045 \mathrm{~g}, 0.067 \mathrm{mmol}) 1 \mathrm{~mL}$ of THF was degassed following three freeze-pump-thaw cycles. The head space was then filled with CO_{2} (1 atm). After 10 min , all the volatiles were removed under reduced pressure to give a colorless solid. The solid was washed with n-pentane ($3 \times 5 \mathrm{~mL}$) and dried under vacuum to afford analytically pure 8 ($0.039 \mathrm{~g}, 0.055 \mathrm{mmol}, 81 \%$) as a colorless powder. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): δ 8.33 (s, $1 \mathrm{H}, \mathrm{HCO}_{2}$), 7.28 (m, $6 \mathrm{H}, o-\mathrm{Ph}$), 6.99 (m, $6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), 6.88 (m, $3 \mathrm{H}, \mathrm{p}-\mathrm{Ph}$), 4.55 (m, $2 \mathrm{H}, \mathrm{Si} H \mathrm{Me}_{2}$), 2.99 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.53 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{NMe}$), 2.45 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), $0.15\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{HH}}\right.$ $=3.08 \mathrm{~Hz}, 12 \mathrm{H}, \mathrm{SiHMe} 2) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz, THF- d_{8}): $\delta 168.9\left(\mathrm{HCO}_{2}\right), 134.6$ (o-Ph), 126.5 ($m-\mathrm{Ph}$), 123.9 ($p-\mathrm{Ph}$), $54.4\left(\mathrm{CH}_{2}\right), 45.5$ (NMe), 4.6 (SiHMe_{2}). ${ }^{11}$ B NMR (128 $\mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 1.2$ (br, s). ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (79.5 MHz, THF- d_{8}): $\delta-13.3$. IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 2227 ($v_{\text {SiH }}$), $2116\left(v_{\text {SiH }}\right), 1677\left(v_{\mathrm{co}}\right), 1634\left(v_{\mathrm{co}}\right)$. Anal. Calc. for $\mathrm{C}_{35} \mathrm{H}_{58} \mathrm{BN}_{5} \mathrm{O}_{2} \mathrm{Si}_{2} \mathrm{Zn}$: C, 58.94; H, 8.20; N, 9.82. Found: C, 59.17; H, 8.09; N, 10.05.

Figure 29. ${ }^{1} \mathrm{H}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8) in THF- d_{8}.

Figure 30. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8) in THF- d_{8}. $\stackrel{\stackrel{\rightharpoonup}{i}}{\stackrel{1}{i}}$

Figure 31. ${ }^{11} \mathrm{~B}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8) in THF- d_{8}.

Figure 32. ${ }^{29} \mathrm{Si}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8) in THF- d_{8}.

Figure 33. Solid-state IR (KBr) spectrum of $\left[(\mathrm{L}) \mathrm{Zn}\left\{\mathrm{N}\left(\mathrm{SiHMe}_{2}\right)_{2}\right\}\right]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8).

[(L) ZnCl$]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (9).

Complex 9 was prepared from $5(0.027 \mathrm{~g}, 0.047 \mathrm{mmol})$ and $\mathrm{CO}_{2}(1 \mathrm{~atm})$ in a similar fashion as 8 and isolated as a colorless solid ($0.019 \mathrm{~g}, 0.031 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF$\left.d_{8}\right): \delta 8.34\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{HCO}_{2}\right), 7.27(\mathrm{~m}, 6 \mathrm{H}, o-\mathrm{Ph}), 7.00(\mathrm{~m}, 6 \mathrm{H}, m-\mathrm{Ph}), 6.88(\mathrm{~m}, 3 \mathrm{H}, p-\mathrm{Ph})$, 3.01 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), $2.49\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.43(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (100 MHz , THF- d_{8}): $\delta 169.0\left(\mathrm{HCO}_{2}\right), 134.6$ (o-Ph), 126.5 ($m-\mathrm{Ph}$), 123.9 ($\left.p-\mathrm{Ph}\right), 53.6\left(\mathrm{CH}_{2}\right), 44.5$ (NMe). ${ }^{11}$ B NMR ($128 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 3.3$ (br, s). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1672 (v_{co}). Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BClN}_{4} \mathrm{O}_{2} \mathrm{Zn}$: C, 60.41; H, 7.20, N, 9.09. Found: C, 60.24; H, 7.07; N, 9.52.

Figure 34. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (9) in THF- d_{8}.

Figure 35. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](9)$ in THF- d_{8}.

$$
\stackrel{\stackrel{N}{\mathrm{~N}}}{\substack{2}}
$$

Figure 36. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](9)$ in THF- d_{8}.

Figure 37. Solid-state IR (KBr) spectrum of $[(\mathrm{L}) \mathrm{ZnCl}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (9).

$[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (10)

Complex 10 was prepared from $6(0.016 \mathrm{~g}, 0.026 \mathrm{mmol})$ and $\mathrm{CO}_{2}(1 \mathrm{~atm})$ as $\mathbf{8}$ and isolated as a colorless solid ($0.019 \mathrm{~g}, 0.031 \mathrm{mmol}, 66 \%$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , THF- d_{8}): $\delta 8.34(\mathrm{~s}, 1 \mathrm{H}$, HCO_{2}), 7.30 (m, $\left.6 \mathrm{H}, o-\mathrm{Ph}\right), 7.01$ (m, $6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), 6.89 (m, $3 \mathrm{H}, p-\mathrm{Ph}$), 3.02 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.47 (m, $8 \mathrm{H}, \mathrm{NCH}_{2}$), 2.42 (s, $12 \mathrm{H}, \mathrm{NMe}$). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-\mathrm{d}_{8}$): $\delta 169.0$ $\left(\mathrm{HCO}_{2}\right), 134.6$ (o-Ph), 126.6 ($\mathrm{m}-\mathrm{Ph}$), 123.9 ($p-\mathrm{Ph}$), $53.6\left(\mathrm{CH}_{2}\right), 45.1(\mathrm{NMe}) .{ }^{11} \mathrm{~B}$ NMR (128 $\left.\mathrm{MHz}, \mathrm{THF}-d_{8}\right): \delta 3.6$ (br, s). IR (KBr, cm^{-1}): 1675 (vco). Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BBrN}_{4} \mathrm{O}_{2} \mathrm{Zn}$: C, 56.35; H, 6.71, N, 8.48. Found: C, 56.33; H, 6.60; N, 8.61.

Figure 38. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](\mathbf{1 0})$ in THF- d_{8}.

Figure 39. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](\mathbf{1 0})$ in THF- d_{8}.

Figure 40. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZBrl}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](10)$ in THF- d_{8}.

Figure 41. Solid-state IR (KBr) spectrum of $[(\mathrm{L}) \mathrm{ZnBr}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (8).

[(L)ZnI][$\left.\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (11)

Complex 11 was prepared from $7(0.030 \mathrm{~g}, 0.045 \mathrm{mmol})$ and $\mathrm{CO}_{2}(1 \mathrm{~atm})$ in a similar fashion as 8 and as a colorless solid ($0.024 \mathrm{~g}, 0.034 \mathrm{mmol}, 75 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{THF}-d_{8}$): δ 8.33 (s, $1 \mathrm{H}, \mathrm{HCO}_{2}$), 7.28 (m, $6 \mathrm{H}, o-\mathrm{Ph}$), 7.00 (m, $6 \mathrm{H}, \mathrm{m}-\mathrm{Ph}$), 6.88 (m, $3 \mathrm{H}, p-\mathrm{Ph}$), 3.09 (m , $\left.8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.53\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{NCH}_{2}\right), 2.45(\mathrm{~s}, 12 \mathrm{H}, \mathrm{NMe}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($100 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 169.2\left(\mathrm{HCO}_{2}\right), 134.6(o-\mathrm{Ph}), 126.6(m-\mathrm{Ph}), 123.9(p-\mathrm{Ph}), 53.6\left(\mathrm{CH}_{2}\right), 46.1(\mathrm{NMe}) .{ }^{11} \mathrm{~B}$ NMR ($128 \mathrm{MHz}, \mathrm{THF}-d_{8}$): $\delta 1.4$ (br, s). IR ($\mathrm{KBr}, \mathrm{cm}^{-1}$): 1679 ($\mathrm{vco}^{\mathrm{co}}$). Anal. Calc. for $\mathrm{C}_{31} \mathrm{H}_{44} \mathrm{BIN}_{4} \mathrm{O}_{2} \mathrm{Zn}: \mathrm{C}, 52.60$; H, 6.27, N, 7.92. Found: C, 52.86; H, 6.17; N, 8.26.

Figure 42. ${ }^{1} \mathrm{H}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]\left(\mathbf{1 1)}\right.$ in $\mathrm{THF}-\mathrm{d}_{8}$.

Figure 43. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](11)$ in THF- d_{8}.

Figure 44. ${ }^{11} \mathrm{~B}$ NMR spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right](11)$ in THF- d_{8}.

Figure 45. Solid-state IR (KBr) spectrum of $[(\mathrm{L}) \mathrm{ZnI}]\left[\mathrm{HCO}_{2} \mathrm{BPh}_{3}\right]$ (11).

Hydroboration catalysis using 1.

The hydroboration catalysis was performed on NMR-scale. A 5 mL aliquot of 0.06 M stock solution of 1,3,5-trimethoxybenzene (internal standard) in THF was prepared (THF:THF- $d_{8}=$ 2:1). A Teflon-sealed NMR tube was charged with substrate (0.21 mmol), HBpin (0.21 $\mathrm{mmol}), \mathbf{1}(0.021 \mathrm{mmol})$ and 0.45 mL of the stock solution. Preheated oil bath was used for the catalysis at $60{ }^{\circ} \mathrm{C}$. For CO_{2} hydroboration, the reaction mixture in a Teflon-sealed NMR tube was degassed by three freeze-pump-thaw cycles, followed by filling the headspace with CO_{2} (1 atm). Reaction progress was monitored by ${ }^{1} \mathrm{H}$ and ${ }^{11} \mathrm{~B}$ NMR spectroscopy and compared with the literature. ${ }^{54}$

Figure 46. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of benzophenone in THF- d_{8}.

Figure 47. ${ }^{11}$ B NMR spectrum for the hydroboration of benzophenone in THF- d_{8}.

Figure 48. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of CO_{2} in THF- d_{8}.

Figure 49. ${ }^{11} \mathrm{~B}$ NMR spectrum for the hydroboration of CO_{2} in THF- d_{8}.

Figure 50. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of N-benzylideneaniline in THF- d_{8}.

Figure 51. ${ }^{11} \mathrm{~B}$ NMR spectrum for the hydroboration of N-benzylideneaniline in THF- d_{8}.

Figure 52. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of pyridine in THF- d_{8}.

Figure 53. ${ }^{11} \mathrm{~B}$ NMR spectrum for the hydroboration of pyridine in THF- d_{8}.

Figure 54. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of ethylacetate in THF- d_{8}.

Figure 55. ${ }^{1} \mathrm{H}$ NMR spectrum for the hydroboration of ethylacetate in THF- d_{8}.

Crystal structure analysis.

Single-crystal X-ray diffraction measurements of 4, $\mathbf{7}$ and $\mathbf{1 1}$ were performed on a Bruker AXS diffractometer equipped with an Incoatec microsource and an APEX area detector using MoK α radiation $(\lambda=0.71073 \AA)$, multilayer optics and ω-scans. Temperature control was achieved with an Oxford cryostream 700. The SMART program was used for data collection and unit cell determination. Processing of the raw data frame was performed using SAINT+, ${ }^{\text {S5 }}$ multi scan absorption corrections were applied with SADABS. ${ }^{56}$ The structures were solved by direct methods (SIR-92). ${ }^{\text {S7 }}$ The crystal lattice of 4 contains two crystallographically independent molecules of THF that are disordered, one of them around a crystallographic inversion center. Disorder was also found in 7 for the carbon atoms C1-C8 of the ligand $\mathrm{Me}_{4} \mathrm{TACD}$, as well as in $\mathbf{1 1}$ for all carbon atoms C1-C12 and all nitrogen atoms N1-N4 of the ligand Me_{4} TACD and the iodine atom I1. In each case, the disorder could be modeled with split positions. The Refinements were performed against F^{2} with the program SHELXL2013 using all reflections, as implemented in the program system WinGX. ${ }^{\text {58,9 }}$ Hydrogen atoms were included as riding on calculated positions with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$ or $1.5 U_{\text {eq. }}$ (non-H), except for the atoms bound to boron (H1 in 7 that was localized in a difference Fourier map and refined in its position with isotropic displacement parameters $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{B})$. All non-hydrogen atoms were refined anisotropically. Refinement results are given in Table S1. Graphical representations were performed with the program DIAMOND. ${ }^{\text {S10 }}$ CCDC-1539861 (4), -1539862 (7), -1539863 (11) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

Table S1. Crystal data and structure refinement.

	4	7	11
chemical formula	$\begin{aligned} & 2\left(\mathrm{C}_{12} \mathrm{H}_{28} \mathrm{IN} 4 \mathrm{Zn}\right), 2 \mathrm{I}, \\ & 3\left(\mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}\right) \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{28} \mathrm{IN}_{4} \mathrm{Zn}, \\ & \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{~B}, \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{C}_{12} \mathrm{H}_{28} \mathrm{IN}_{4} \mathrm{Zn}, \\ & \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BO}_{2} \end{aligned}$
fw ($\mathrm{g} \cdot \mathrm{mol}^{-1}$)	1311.42	745.87	707.78
space group	$P 2_{1} / n$	$P 2_{1 / C}$	Pbca
crystal size (mm)	$0.16 \times 0.22 \times 0.22$	$0.21 \times 0.27 \times 0.31$	$0.30 \times 0.30 \times 0.37$
unit cell parameters			
$a(\AA)$	7.936(2)	16.619(5)	17.691(2)
b (\AA)	12.276(3)	9.831(3)	20.439(3)
$c(\AA)$	25.751(7)	21.995(7)	17.778(2)
$\beta\left({ }^{\circ}\right)$	94.987(6)	103.977(5)	
$\left(\AA^{3}\right)$	2499.2(11)	3847.2(19)	1552.4(4)
Z	2	4	8
T (K)	100(2)	100(2)	100(2)
$\mu\left(\mathrm{Mo} \mathrm{K}_{\alpha}\right)\left(\mathrm{mm}^{-1}\right)$	3.470	1.621	1.758
reflns	22658	31105	56175
independent reflns $\left(R_{\text {int }}\right)$	5153 (0.0993)	7201 (0.1128)	6662 (0.1187)
observed reflns	3429	4782	4253
parameters	238	379	358
goodness of fit on F^{2}	1.024	0.929	1.017
final R indices			
$\begin{aligned} & R 1, w R 2 \\ & {[I \geq 2 \sigma(I)]} \end{aligned}$	0.0590, 0.1357	0.0471, 0.0974	0.0590, 0.1458
$R 1, w R 2$ (all data)	0.0949, 0.1489	0.0792, 0.1048	0.0983, 0.1685

5. References.

S1 Y. Liang and R. Anwander, Dalton Trans., 2006, 1909-1918.
S2 J. Coates, D. Hadi and S. Lincoln, Aus. J. Chem., 1982, 35, 903-909.
S3 N. M. Yoon, K. E. Kim and J. Kang, J. Org. Chem., 1986, 51, 226-229.
S4 (a) D. Mukherjee, H. Osseili, T. P. Spaniol and J. Okuda, J. Am. Chem. Soc., 2016, 138, 10790-10793; (b) D. Mukherjee, S. Shirase, T. P. Spaniol, K. Mashima and J. Okuda, Chem. Comтип., 2016, 52, 13155-13158.

S5 Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
S6 Bruker, SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004.
S7 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr. 1993, 26, 343-350.
S8 G. M. Sheldrick, Acta Crystallogr. Sect. A 2008, 64, 112-122.
S9 L. J. Farrugia, J. Appl. Crystallogr. 2012, 45, 849-854.
S10 K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany, 2017.

