A journey through ternary lead chlorido

tungstates by thermal scanning

Supporting Information

Table of contents:

Figure S1.	Powder XRD refinement pattern of Pb _{0.5} WCl ₆	S2
Figure S2.	Powder XRD refinement pattern of PbW ₂ Cl ₁₀	S2
Figure S3.	Powder XRD refinement pattern of PbW ₆ Cl ₁₄	S3
Table S1.	Crystal data and structure refinement data for $Pb_{0.5}WCI_6$	S4
Table S2.	Crystal data and structure refinement for PbW_2CI_{10}	S5
Table S3.	Crystal data and structure refinement for $Pb_{1.5}W_3CI_{13}$	S6
Table S4.	Crystal data and structure refinement for $Pb_2W_3CI_{14}$	S7
Table S5.	Crystal data and structure refinement for PbW_6CI_{14}	S8
Table S6.	Atomic coordinates and quivalent isotropic displacement parameters for $Pb_{0.5}WCl_6$.	S10
Table S7.	Atomic coordinates and equivalent isotropic displacement parameters for PbW ₂ CI ₁₀	S10
Table S8.	Atomic coordinates and equivalent isotropic displacement parameters for $Pb_{1,5}W_3CI_{13}$	S11
Table S9.	Atomic coordinates and equivalent isotropic displacement parameters for $Pb_2W_3CI_{14}$	S12
Table S10.	Atomic coordinates and equivalent isotropic displacement parameters for PbW ₆ CI ₁₄	S13

Table S11.	Selected Bond lengths [Å] for Pb _{0.5} WCl ₆	S13
Table S12.	Selected Bond lengths [Å] for PbW ₂ Cl ₁₀	S14
Table S13.	Bond lengths [pm] and angles [°] for $Pb_{1.5}W_3CI_{13}$	S15-17
Table S14.	Bond lengths [Å] and angles [°] for $Pb_2W_3CI_{14}$	S18-21
Table S15.	Selected Bond lengths [Å] for PbW_6CI_{14}	S22
Table S15.	Anisotropic displacement parameters for $Pb_{1.5}W_3CI_{13}$	S23
Table S17.	Anisotropic displacement parameters for $Pb_2W_3CI_{14}$	S24

Figure S1. Powder XRD refinement pattern of Pb_{0.5}WCl₆.

Figure S2. Powder XRD refinement pattern of PbW₂Cl₁₀.

Figure S3. Powder XRD refinement pattern of PbW_6CI_{14} .

Table S1. Crystal data and structure refinement data for $Pb_{0.5}WCI_{6}$.

Pb _{0.5} WCl ₆
432 728
500.168 g/mol
298(2) K
1.54060 Å
Tetragonal
P 4 ₂ /n (No. 86)
a = b = 8.67052(9) Å
c = 10.8489(2) Å
815.67(2) Å ³
4
63.084 mm ⁻¹
4.0727 gcm ⁻³
2.5 to 55 °
540
43
22
5.3961, 7.0788
3.2977
1.4295

Table S2. Crystal data and structure refinement for PbW_2CI_{10} .

Empirical formula	PbW ₂ Cl ₁₀
ICSD No	432 730
Formula weight	929.38 g/mol
Temperature	298(2) K
Wavelength	1.54060 Å
Crystal system	Tetragonal
Space group	P 4 ₂ /m (No. 86)
Unit cell dimensions	a = b = 6.2222(1) Å
	c = 16.7414(3) Å
Volume	648.16(2) Å ³
Z	2
μ (CuKa)	73.537 mm ⁻¹
Density (calculated)	4.7634 gcm ⁻³
Theta range for data collection	2.5 to 59.5 °
Total number of reflections	521
Refined parameters	59
Refined structure parameters	36
R _p , R _{wp}	4.61, 5.93
R _{Bragg}	2.2656
χ ²	1.4979

Table S3. Crystal data and structure refinement for $Pb_{1.5}W_3Cl_{13}$.

Empirical formula	Pb _{1.5} W ₃ Cl ₁₃		
ICSD No	432 729		
Formula weight	1323.19		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Tetragonal		
Space group	P4 ₂ /m		
Unit cell dimensions	a = 13.4831(10) Å	<i>α</i> = 90°.	
	b = 13.4831(10) Å	β= 90°.	
	c = 9.8247(7) Å	$\gamma = 90^{\circ}$.	
Volume	1786.1(3) Å ³		
Z	2		
Density (calculated)	4.921 g/cm ³		
Absorption coefficient	35.265 mm ⁻¹		
F(000)	2264		
Crystal size	0.1 x 0.02 x 0.02 mm ³		
ta range for data collection 2.565 to 25.022°.			
Index ranges	$-16 \le h \le 16, -16 \le k \le 1$	6, $-10 \le l \le 11$	
Reflections collected	17310		
Independent reflections	1680 [R(int) = 0.0852]		
Completeness to theta = 25.022°	99.9 %		
Refinement method	Full-matrix least-squares	on F ²	
Data / restraints / parameters	1680 / 0 / 87		
Goodness-of-fit on F ²	of-fit on F^2 1.226		
Final R indices $[I > 2\sigma(I)]$ R1 = 0.0565, wR2 = 0.0776			
R indices (all data) $R1 = 0.0757, wR2 = 0.0818$			
Largest diff. peak and hole	1.971 and -1.707 e.Å-3		

Table S4. Crystal data and structure refinement for $Pb_2W_3CI_{14}$.

Empirical formula	Pb ₂ W ₃ Cl ₁₄		
ICSD No	432 780		
Formula weight	1462.23		
Temperature	293(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P-1		
Unit cell dimensions	a = 7.5253(5) Å	α=111.752(5)°.	
	b = 10.7498(7) Å	β= 98.044(5)°.	
	c = 12.5959(8) Å	$\gamma = 96.224(5)^{\circ}$.	
Volume	922.75(11) Å ³		
Z	2		
Density (calculated)	5.263 g/cm ³		
Absorption coefficient	38.817 mm ⁻¹		
F(000)	1248		
Crystal size	0.3 x 0.3 x 0.1 mm ³		
Theta range for data collection	2.776 to 25.350°.		
Index ranges	$-8 \le h \le 9, -12 \le k \le 12, -15 \le l \le 14$		
Reflections collected	5793		
Independent reflections	3164 [R(int) = 0.0362]		
Completeness to theta = 25.242°	93.9 %		
Max. and min. transmission	0.5596 and 0.2017		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	3164 / 0 / 173		
Goodness-of-fit on F ²	1.043		
Final R indices $[I > 2\sigma(I)]$	R1 = 0.0320, wR2 = 0.0602		
R indices (all data)	R1 = 0.0471, $wR2 = 0.0638$		
Largest diff. peak and hole	1.462 and -1.229 e.Å ⁻³		

Table S5. Crystal data and structure refinement for PbW_6CI_{14} .

Empirical formula	PbW ₆ Cl ₁₄
ICSD No	432 731
Formula weight	1806.58 g/mol
Temperature	298(2) K
Wavelength	1.54060 Å
Crystal system	Cubic
Space group	<i>Pn-3</i> (No. 14)
Unit cell dimensions	a = 12.9540(2) Å
Volume	2173.77(6) Å ³
Z	4
μ (CuKa)	87.401 mm ⁻¹
Density (calculated)	5.5212 gcm ⁻³
Theta range for data collection	2.5 to 55 °
Total number of reflections	488
Refined parameters	51
R _p , R _{wp}	0.0551, 0.0707
R _{Bragg}	2.4660
χ ²	1.9680

Table S6. Atomic coordinates and equivalent isotropic displacement parameters (pm^2) for $Pb_{0.5}WCI_6$. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
W1	1/2	1/2	0	0.0533(6)
Pb1	1/4	1/4	1/4	0.0586(8)
CI1	0.6916(8)	0.4425(7)	0.8636(6)	0.053(3)
CI2	0.4653(7)	0.2371(7)	0.0372(5)	0.061(3)
CI3	0.6758(8)	0.5116(7)	0.1560(6)	0.071(3)

Table S7. Atomic coordinates and equivalent isotropic displacement parameters (pm^2) for PbW₂Cl₁₀. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

v	М	7		
*	у	Z	U(Eq)	
1/2	0	0.0808(1)	0.046(2)	
1/2	1/2	1/4	0.052(2)	
0.2823(6)	0.1422(7)	0.1893(3)	0.074(2)	
0.7622(7)	-0.1790(9)	0	0.040(2)	
0.6969(5)	0.3128(5)	0.0887(3)	0.071(2)	
	x 1/2 1/2 0.2823(6) 0.7622(7) 0.6969(5)	x y ½ 0 ½ ½ 0.2823(6) 0.1422(7) 0.7622(7) -0.1790(9) 0.6969(5) 0.3128(5)	x y z ½ 0 0.0808(1) ½ ½ ¼ 0.2823(6) 0.1422(7) 0.1893(3) 0.7622(7) -0.1790(9) 0 0.6969(5) 0.3128(5) 0.0887(3)	xyzU(eq) $\frac{1}{2}$ 00.0808(1)0.046(2) $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{4}$ 0.052(2)0.2823(6)0.1422(7)0.1893(3)0.074(2)0.7622(7)-0.1790(9)00.040(2)0.6969(5)0.3128(5)0.0887(3)0.071(2)

	x	У	Z	U(eq)
Pb(1)	1/2	1/2	-1/4	0.028(1)
Pb(2)	651(1)	1796(1)	1/2	0.034(1)
W(1)	1186(1)	2898(1)	1383(1)	0.021(1)
W(2)	2733(1)	3733(1)	0	0.019(1)
Cl(1)	2333(5)	2007(5)	0	0.023(1)
Cl(2)	1735(4)	4572(3)	1662(5)	0.027(1)
Cl(3)	3637(5)	5328(5)	0	0.026(2)
Cl(4)	-100(5)	3571(5)	0	0.025(1)
Cl(5)	54(4)	3388(4)	3227(5)	0.036(1)
Cl(6)	2198(4)	2334(4)	3262(5)	0.034(1)
Cl(7)	359(4)	1358(4)	1581(5)	0.034(1)
Cl(8)	3950(4)	3256(4)	1637(5)	0.032(1)

Table S8. Atomic coordinates and equivalent isotropic displacement parameters (pm^2) for $Pb_{1,5}W_3CI_{13}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	У	Z	U(eq)
W(6)	2112(1)	7355(1)	9066(1)	0.016(1)
W(7)	3698(1)	6890(1)	7176(1)	0.017(1)
W(8)	2194(1)	4738(1)	7602(1)	0.017(1)
Pb(1)	-61(1)	1212(1)	7910(1)	0.027(1)
Pb(2)	5194(1)	7862(1)	4771(1)	0.031(1)
Cl(1)	509(4)	6262(3)	7077(3)	0.020(1)
Cl(2)	-705(4)	3773(3)	7824(3)	0.025(1)
Cl(3)	3272(4)	5686(3)	9662(3)	0.024(1)
Cl(4)	5302(4)	5186(3)	7440(3)	0.023(1)
Cl(5)	5178(4)	8239(3)	9135(3)	0.023(1)
Cl(6)	3146(4)	8724(3)	11178(3)	0.026(1)
Cl(7)	1328(4)	3203(3)	5604(3)	0.026(1)
Cl(8)	1197(5)	9364(3)	9017(3)	0.026(1)
Cl(9)	-725(4)	6887(3)	9595(3)	0.025(1)
Cl(10)	6697(4)	7693(3)	6848(3)	0.025(1)
Cl(11)	2924(5)	8774(3)	6746(3)	0.027(1)
Cl(12)	3315(5)	2738(3)	7798(3)	0.030(1)
Cl(13)	2994(4)	5688(3)	5111(3)	0.026(1)
Cl(14)	7422(5)	10360(4)	5745(3)	0.036(1)

Table S9. Atomic coordinates and equivalent isotropic displacement parameters $(pm^2 \times 10^{-1})$ for $Pb_2W_3CI_{14}$. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Table S10. Atomic coordinates and equivalent isotropic displacement parameters (pm^2) for PbW₆Cl₁₄. U(eq) is defined as one third of the trace of the orthogonalized Uij tensor.

	x	у	Z	U(eq)
W1	0.86532(15)	0.0293(3)	0.9638(3)	0.0342(5)
Pb1	1/2	1/2	1/2	0.0332(9)
CI1	0.1346(5)	0.1346(5)	0.1346(5)	0.038(6)
CI2	0.3791(4)	0.6903(4)	0.9343(4)	0.033(3)
CI3	0.5875(6)	0.8135(4)	0.0715(6)	0.090(3)

Table S11. Selected Bond lengths [Å] for $Pb_{0.5}WCI_6$.

W1	CI1	2.280(7)
W1	CI1	2.280(7)
W1	CI2	2.334(6)
W1	CI2	2.334(6)
W1	CI3	2.280(7)
W1	CI3	2.280(7)
Pb1	CI1	2.981(6)
Pb1	CI1	2.981(6)
Pb1	CI1	2.981(7)
Pb1	CI1	2.981(7)
Pb1	CI2	2.971(6)
Pb1	CI2	2.971(6)
Pb1	CI2	2.971(6)
Pb1	Cl2	2.971(6)

W1	W1	2.706(2)
W1	CI1	2.432(5)
W1	CI1	2.432(5)
W1	CI2	2.394(4)
W1	CI2	2.394(4)
W1	CI3	2.304(3)
W1	CI3	2.304(3)
Pb1	CI1	2.797(4)
Pb1	CI3	3.186(5)

Table S12. Selected Bond lengths [Å] for PbW_2CI_{10} .

Pb(1)-Cl(8)#1	2.873(5)
Pb(1)-Cl(8)#2	2.873(5)
Pb(1)-Cl(8)#3	2.873(5)
Pb(1)-Cl(8)#4	2.873(5)
Pb(2)-Cl(6)#5	2.792(5)
Pb(2)-Cl(6)	2.792(5)
Pb(2)-Cl(5)#5	2.879(5)
Pb(2)-Cl(5)	2.879(5)
W(1)-Cl(7)	2.365(5)
W(1)-Cl(4)	2.382(6)
W(1)-Cl(1)	2.383(5)
W(1)-Cl(2)	2.391(5)
W(1)-Cl(6)	2.419(5)
W(1)-Cl(5)	2.460(5)
W(1)-W(1)#2	2.717(2)
W(1)-W(2)	2.732(1)
W(2)-Cl(8)	2.386(5)
W(2)-Cl(8)#2	2.386(5)
W(2)-Cl(1)	2.390(6)
W(2)-Cl(2)#2	2.399(5)
W(2)-Cl(2)	2.399(5)
W(2)-Cl(3)	2.471(6)
W(2)-W(1)#2	2.732(1)
Cl(8)#1-Pb(1)-Cl(8)#2	145.7(2)
Cl(8)#1-Pb(1)-Cl(8)#3	94.99(6)
Cl(8)#2-Pb(1)-Cl(8)#3	94.99(6)
Cl(8)#1-Pb(1)-Cl(8)#4	94.99(6)
Cl(8)#2-Pb(1)-Cl(8)#4	94.99(6)
Cl(8)#3-Pb(1)-Cl(8)#4	145.7(2)
Cl(6)#5-Pb(2)-Cl(6)	75.4(2)
Cl(6)#5-Pb(2)-Cl(5)#5	69.23(14)
Cl(6)-Pb(2)-Cl(5)#5	112.67(17)
Cl(6)#5-Pb(2)-Cl(5)	112.67(17)
Cl(6)-Pb(2)-Cl(5)	69.23(14)
Cl(5)#5-Pb(2)-Cl(5)	74.5(2)
Cl(7)-W(1)-Cl(4)	92.2(2)
Cl(7)-W(1)-Cl(1)	84.8(2)

Table S13.	Bond lengths [pm] and angles [°] for Pb _{1.5} W ₃ Cl ₁₃ .

Cl(4)-W(1)-Cl(1)	109.83(13)
Cl(7)-W(1)-Cl(2)	164.86(17)
Cl(4)-W(1)-Cl(2)	86.0(2)
Cl(1)-W(1)-Cl(2)	109.91(19)
Cl(7)-W(1)-Cl(6)	85.84(18)
Cl(4)-W(1)-Cl(6)	164.97(16)
Cl(1)-W(1)-Cl(6)	84.87(16)
Cl(2)-W(1)-Cl(6)	91.95(18)
Cl(7)-W(1)-Cl(5)	83.26(19)
Cl(4)-W(1)-Cl(5)	82.30(16)
Cl(1)-W(1)-Cl(5)	163.33(17)
Cl(2)-W(1)-Cl(5)	81.60(18)
Cl(6)-W(1)-Cl(5)	82.67(17)
Cl(7)-W(1)-W(1)#2	94.72(13)
Cl(4)-W(1)-W(1)#2	55.23(9)
Cl(1)-W(1)-W(1)#2	55.25(9)
Cl(2)-W(1)-W(1)#2	96.60(11)
Cl(6)-W(1)-W(1)#2	139.76(13)
Cl(5)-W(1)-W(1)#2	137.44(13)
Cl(7)-W(1)-W(2)	139.72(14)
Cl(4)-W(1)-W(2)	96.59(13)
Cl(1)-W(1)-W(2)	55.20(15)
Cl(2)-W(1)-W(2)	55.36(11)
Cl(6)-W(1)-W(2)	94.49(13)
Cl(5)-W(1)-W(2)	136.82(14)
W(1)#2-W(1)-W(2)	60.188(19)
Cl(8)-W(2)-Cl(8)#2	84.8(3)
Cl(8)-W(2)-Cl(1)	83.81(17)
Cl(8)#2-W(2)-Cl(1)	83.81(17)
Cl(8)-W(2)-Cl(2)#2	166.35(17)
Cl(8)#2-W(2)-Cl(2)#2	93.09(17)
Cl(1)-W(2)-Cl(2)#2	109.40(16)
Cl(8)-W(2)-Cl(2)	93.09(17)
Cl(8)#2-W(2)-Cl(2)	166.35(17)
Cl(1)-W(2)-Cl(2)	109.40(15)
Cl(2)#2-W(2)-Cl(2)	85.8(2)
Cl(8)-W(2)-Cl(3)	84.01(17)
Cl(8)#2-W(2)-Cl(3)	84.01(17)
Cl(1)-W(2)-Cl(3)	163.5(2)
Cl(2)#2-W(2)-Cl(3)	82.36(16)
Cl(2)-W(2)-Cl(3)	82.35(16)

Cl(8)-W(2)-W(1)	94.50(12)
Cl(8)#2-W(2)-W(1)	138.48(13)
Cl(1)-W(2)-W(1)	54.96(12)
Cl(2)#2-W(2)-W(1)	96.00(12)
Cl(2)-W(2)-W(1)	55.08(11)
Cl(3)-W(2)-W(1)	137.33(12)
Cl(8)-W(2)-W(1)#2	138.47(13)
Cl(8)#2-W(2)-W(1)#2	94.50(12)
Cl(1)-W(2)-W(1)#2	54.96(12)
Cl(2)#2-W(2)-W(1)#2	55.08(11)
Cl(2)-W(2)-W(1)#2	96.00(12)
Cl(3)-W(2)-W(1)#2	137.33(12)
W(1)-W(2)-W(1)#2	59.62(4)
W(1)-Cl(1)-W(1)#2	69.50(18)
W(1)-Cl(1)-W(2)	69.84(17)
W(1)#2-Cl(1)-W(2)	69.84(17)
W(1)-Cl(2)-W(2)	69.56(12)
W(1)#2-Cl(4)-W(1)	69.54(19)
W(1)-Cl(5)-Pb(2)	94.12(17)
W(1)-Cl(6)-Pb(2)	97.28(17)
W(2)-Cl(8)-Pb(1)#1	108.47(18)

Symmetry transformations used to generate equivalent atoms:

#1 -x+1,-y+1,-z #2 x,y,-z #3 y,-x+1,z-1/2 #4 -y+1,x,z-1/2 #5 x,y,-z+1

W(6)-Cl(8)	2.355(3)	
W(6)-Cl(5)	2.376(3)	
W(6)-Cl(9)	2.381(3)	
W(6)-Cl(3)	2.388(3)	
W(6)-Cl(1)	2.403(3)	
W(6)-Cl(6)	2.474(3)	
W(6)-W(7)	2.7174(7)	
W(6)-W(8)	2.7472(7)	
W(7)-Cl(5)	2.379(3)	
W(7)-Cl(13)	2.386(3)	
W(7)-Cl(11)	2.391(3)	
W(7)-Cl(1)	2.395(3)	
W(7)-Cl(4)	2.396(3)	
W(7)-Cl(10)	2.472(3)	
W(7)-W(8)	2.7290(7)	
W(8)-Cl(3)	2.387(3)	
W(8)-Cl(4)	2.389(3)	
W(8)-Cl(7)	2.390(3)	
W(8)-Cl(1)	2.398(3)	
W(8)-Cl(2)	2.409(3)	
W(8)-Cl(12)	2.474(3)	
Pb(1)-Cl(6)#1	2.728(3)	
Pb(1)-Cl(14)#2	2.862(4)	
Pb(1)-Cl(2)	2.885(3)	
Pb(1)-Cl(12)	2.921(3)	
Pb(1)-Cl(9)#1	2.977(3)	
Pb(1)-Cl(8)#3	2.980(3)	
Pb(2)-Cl(14)	2.745(4)	
Pb(2)-Cl(10)	2.779(3)	
Pb(2)-Cl(13)	2.912(3)	
Pb(2)-Cl(7)#4	2.996(3)	
Pb(2)-Cl(14)#5	3.054(4)	
Cl(8)-W(6)-Cl(5)	90.33(11)	
Cl(8)-W(6)-Cl(9)	86.90(11)	
Cl(5)-W(6)-Cl(9)	162.99(11)	
Cl(8)-W(6)-Cl(3)	164.61(12)	
Cl(5)-W(6)-Cl(3)	87.22(11)	
Cl(9)-W(6)-Cl(3)	91.02(11)	
Cl(8)-W(6)-Cl(1)	86.27(11)	

Table S14. Bond lengths [Å] and angles [°] for $Pb_2W_3CI_{14}$.

Cl(5)-W(6)-Cl(1)	110.03(10)
Cl(9)-W(6)-Cl(1)	86.54(10)
Cl(3)-W(6)-Cl(1)	108.84(11)
Cl(8)-W(6)-Cl(6)	84.39(12)
Cl(5)-W(6)-Cl(6)	78.97(10)
Cl(9)-W(6)-Cl(6)	84.06(11)
Cl(3)-W(6)-Cl(6)	80.23(11)
Cl(1)-W(6)-Cl(6)	167.08(11)
Cl(8)-W(6)-W(7)	93.56(7)
Cl(5)-W(6)-W(7)	55.19(8)
Cl(9)-W(6)-W(7)	141.71(8)
Cl(3)-W(6)-W(7)	97.48(8)
Cl(1)-W(6)-W(7)	55.36(7)
Cl(6)-W(6)-W(7)	134.14(7)
Cl(8)-W(6)-W(8)	140.53(9)
Cl(5)-W(6)-W(8)	95.79(8)
Cl(9)-W(6)-W(8)	97.00(8)
Cl(3)-W(6)-W(8)	54.87(8)
Cl(1)-W(6)-W(8)	55.00(7)
Cl(6)-W(6)-W(8)	135.07(8)
W(7)-W(6)-W(8)	59.918(18)
Cl(5)-W(7)-Cl(13)	164.72(10)
Cl(5)-W(7)-Cl(11)	94.82(12)
Cl(13)-W(7)-Cl(11)	84.19(12)
Cl(5)-W(7)-Cl(1)	110.21(10)
Cl(13)-W(7)-Cl(1)	84.98(11)
Cl(11)-W(7)-Cl(1)	86.52(11)
Cl(5)-W(7)-Cl(4)	84.28(11)
Cl(13)-W(7)-Cl(4)	92.18(11)
Cl(11)-W(7)-Cl(4)	162.82(11)
Cl(1)-W(7)-Cl(4)	109.95(10)
Cl(5)-W(7)-Cl(10)	80.16(10)
Cl(13)-W(7)-Cl(10)	84.61(11)
Cl(11)-W(7)-Cl(10)	81.86(11)
Cl(1)-W(7)-Cl(10)	165.11(11)
Cl(4)-W(7)-Cl(10)	81.08(10)
Cl(5)-W(7)-W(6)	55.09(7)
Cl(13)-W(7)-W(6)	140.19(8)
Cl(11)-W(7)-W(6)	97.71(8)
Cl(1)-W(7)-W(6)	55.64(7)
Cl(4)-W(7)-W(6)	95.81(7)

Cl(10)-W(7)-W(6)	135.15(8)
Cl(5)-W(7)-W(8)	96.20(7)
Cl(13)-W(7)-W(8)	93.90(8)
Cl(11)-W(7)-W(8)	141.77(8)
Cl(1)-W(7)-W(8)	55.34(7)
Cl(4)-W(7)-W(8)	55.10(7)
Cl(10)-W(7)-W(8)	136.12(8)
W(6)-W(7)-W(8)	60.583(18)
Cl(3)-W(8)-Cl(4)	86.49(11)
Cl(3)-W(8)-Cl(7)	163.26(11)
Cl(4)-W(8)-Cl(7)	92.25(11)
Cl(3)-W(8)-Cl(1)	109.04(11)
Cl(4)-W(8)-Cl(1)	110.09(10)
Cl(7)-W(8)-Cl(1)	87.08(11)
Cl(3)-W(8)-Cl(2)	91.19(11)
Cl(4)-W(8)-Cl(2)	165.17(11)
Cl(7)-W(8)-Cl(2)	85.76(11)
Cl(1)-W(8)-Cl(2)	84.52(10)
Cl(3)-W(8)-Cl(12)	81.54(12)
Cl(4)-W(8)-Cl(12)	79.03(11)
Cl(7)-W(8)-Cl(12)	81.83(12)
Cl(1)-W(8)-Cl(12)	165.99(12)
Cl(2)-W(8)-Cl(12)	86.14(11)
Cl(3)-W(8)-W(7)	97.18(8)
Cl(4)-W(8)-W(7)	55.35(7)
Cl(7)-W(8)-W(7)	95.80(8)
Cl(1)-W(8)-W(7)	55.24(7)
Cl(2)-W(8)-W(7)	139.46(8)
Cl(12)-W(8)-W(7)	134.28(8)
Cl(3)-W(8)-W(6)	54.89(8)
Cl(4)-W(8)-W(6)	95.20(8)
Cl(7)-W(8)-W(6)	141.77(8)
Cl(1)-W(8)-W(6)	55.18(8)
Cl(2)-W(8)-W(6)	95.43(8)
Cl(12)-W(8)-W(6)	136.40(9)
W(7)-W(8)-W(6)	59.499(17)
Cl(6)#1-Pb(1)-Cl(14)#2	83.65(11)
Cl(6)#1-Pb(1)-Cl(2)	84.45(9)
Cl(14)#2-Pb(1)-Cl(2)	77.82(10)
Cl(6)#1-Pb(1)-Cl(12)	147.27(10)
Cl(14)#2-Pb(1)-Cl(12)	109.56(10)

Cl(2)-Pb(1)-Cl(12)	70.10(9)
Cl(6)#1-Pb(1)-Cl(9)#1	69.34(9)
Cl(14)#2-Pb(1)-Cl(9)#1	144.00(11)
Cl(2)-Pb(1)-Cl(9)#1	76.33(9)
Cl(12)-Pb(1)-Cl(9)#1	84.49(9)
Cl(6)#1-Pb(1)-Cl(8)#3	90.91(9)
Cl(14)#2-Pb(1)-Cl(8)#3	125.02(10)
Cl(2)-Pb(1)-Cl(8)#3	156.12(10)
Cl(12)-Pb(1)-Cl(8)#3	103.97(9)
Cl(9)#1-Pb(1)-Cl(8)#3	80.11(9)
Cl(14)-Pb(2)-Cl(10)	82.53(10)
Cl(14)-Pb(2)-Cl(13)	148.28(10)
Cl(10)-Pb(2)-Cl(13)	70.09(9)
Cl(14)-Pb(2)-Cl(7)#4	84.18(11)
Cl(10)-Pb(2)-Cl(7)#4	73.84(9)
Cl(13)-Pb(2)-Cl(7)#4	102.55(9)
Cl(14)-Pb(2)-Cl(14)#5	79.49(12)
Cl(10)-Pb(2)-Cl(14)#5	131.46(10)
Cl(13)-Pb(2)-Cl(14)#5	106.59(10)
Cl(7)#4-Pb(2)-Cl(14)#5	146.73(9)
W(7)-Cl(1)-W(8)	69.42(8)
W(7)-Cl(1)-W(6)	69.00(8)
W(8)-Cl(1)-W(6)	69.82(8)
W(8)-Cl(2)-Pb(1)	103.06(11)
W(8)-Cl(3)-W(6)	70.24(9)
W(8)-Cl(4)-W(7)	69.55(8)
W(6)-Cl(5)-W(7)	69.72(9)
W(6)-Cl(6)-Pb(1)#1	105.12(12)
W(8)-Cl(7)-Pb(2)#4	100.32(11)
W(6)-Cl(8)-Pb(1)#6	156.08(14)
W(6)-Cl(9)-Pb(1)#1	100.36(11)
W(7)-Cl(10)-Pb(2)	93.10(10)
W(8)-Cl(12)-Pb(1)	100.43(11)
W(7)-Cl(13)-Pb(2)	91.65(10)
Pb(2)-Cl(14)-Pb(1)#7	122.02(12)
Pb(2)-Cl(14)-Pb(2)#5	100.51(12)
Pb(1)#7-Cl(14)-Pb(2)#5	122.81(13)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z+2 #2 x-1,y-1,z #3 x,y-1,z #4 -x+1,-y+1,-z+1 #5 -x+1,-y+2,-z+1 #6 x,y+1,z #7 x+1,y+1,z

W1	W1	2.619(4)
W1	W1	2.619(5)
W1	W1	3.692(3)
W1	W1	2.602(5)
W1	W1	2.602(4)
W1	Cl1	4.350(7)
W1	Cl1	2.476(8)
W1	CI2	4.382(6)
W1	CI2	2.485(6)
W1	CI2	2.488(6)
W1	CI2	2.475(6)
W1	CI2	4.376(6)
W1	CI2	4.374(6)
W1	CI3	2.471(8)
Pb1	CI2	4.390(5)
Pb1	CI3	2.825(6)
Pb1	CI3	2.825(8)
Pb1	CI3	2.825(7)
Pb1	CI3	2.825(6)
Pb1	CI3	2.825(8)
Pb1	CI3	2.825(7)

Table S15. Selected Bond lengths [Å] for PbW_6CI_{14} .

Table S16. Anisotropic displacement parameters (Å²x 10³) for Pb_{1.5}W₃Cl₁₃. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Pb(1)	29(1)	29(1)	25(1)	0	0	0
Pb(2)	35(1)	39(1)	28(1)	0	0	-6(1)
W(1)	23(1)	24(1)	15(1)	2(1)	1(1)	0(1)
W(2)	21(1)	22(1)	15(1)	0	0	-2(1)
Cl(1)	22(3)	23(3)	23(3)	0	0	-2(3)
Cl(2)	33(3)	24(2)	23(3)	-7(2)	2(2)	-2(2)
Cl(3)	33(4)	20(3)	25(3)	0	0	-8(3)
Cl(4)	24(3)	34(4)	16(3)	0	0	1(3)
Cl(5)	37(3)	49(3)	23(3)	4(2)	11(2)	9(2)
Cl(6)	36(3)	46(3)	19(3)	10(2)	-4(2)	3(2)
Cl(7)	37(3)	35(3)	32(3)	11(2)	-2(2)	-8(2)
Cl(8)	32(3)	32(3)	33(3)	5(2)	-8(2)	-2(2)

Table S17. Anisotropic displacement parameters (Å²x 10³) for Pb₂W₃Cl₁₄. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
W(6)	16(1)	16(1)	15(1)	5(1)	0(1)	3(1)
W(7)	16(1)	19(1)	15(1)	5(1)	1(1)	2(1)
W(8)	17(1)	16(1)	17(1)	4(1)	0(1)	4(1)
Pb(1)	28(1)	26(1)	27(1)	12(1)	5(1)	7(1)
Pb(2)	38(1)	25(1)	27(1)	9(1)	2(1)	3(1)
Cl(1)	16(1)	22(2)	19(2)	7(1)	-1(1)	2(1)
Cl(2)	23(2)	20(2)	33(2)	12(1)	7(2)	4(1)
Cl(3)	28(2)	24(2)	19(2)	8(1)	-3(1)	7(1)
Cl(4)	18(2)	23(2)	25(2)	6(1)	2(1)	7(1)
Cl(5)	18(2)	24(2)	19(2)	4(1)	0(1)	-1(1)
Cl(6)	25(2)	27(2)	18(2)	2(1)	1(1)	2(1)
Cl(7)	24(2)	26(2)	20(2)	1(1)	1(1)	4(1)
Cl(8)	36(2)	22(2)	24(2)	9(1)	10(2)	13(1)
Cl(9)	20(2)	28(2)	22(2)	4(1)	5(1)	3(1)
Cl(10)	18(2)	30(2)	22(2)	6(1)	5(1)	0(1)
Cl(11)	30(2)	26(2)	31(2)	15(2)	5(2)	11(1)
Cl(12)	28(2)	23(2)	40(2)	14(2)	2(2)	7(1)
Cl(13)	27(2)	28(2)	16(2)	5(1)	1(1)	2(1)
Cl(14)	42(2)	27(2)	33(2)	12(2)	-9(2)	-2(2)