Supporting Information for

A Chiral Salen-based MOF Catalytic Material with highly thermal, aqueous and chemical stabilities

Jiawei Li, Yanwei Ren,* Chaorong Qi and Huanfeng Jiang*

Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, P. R. China

Content

1. Figure S1. IR spectrum of L	2
2. Figure S2. IR spectrum of 1	2
3. Figure S3. UV-vis spectrum of L	3
4. Figure S4. ¹ H NMR of L	3
5. Figure S5. ¹³ C NMR of L	1
6. Figure S6. HR-MS of L	1
7. Figure S7. ¹ H NMR of NiL and 1	5
8. Figure S8. Asymmetric unit of 1	5
9. Figure S9. Space-filling model of the 8-fold interpenetrated framework along <i>a</i> axis	5
10. Figure S10. TG curve of 1	7
11. Figure S11 . NMR data of β-hydroxy-1,2,3-triazoles	1
12. Figure S12. GC-MS analyses of the cyclic carbonates	5
13. Figure S13. Proposed mechanism for the cycloaddition of CO ₂ with epoxides catalyzed by 1	5
14. Table S1 . BET plot data for 1	7

Figure S2. IR spectrum of 1

Figure S3. UV-vis spectrum of L

Figure S4. ¹H NMR of L

Figure S5. ¹³C NMR of L

Figure S6. HR-MS of L

Figure S7. (a) ¹H NMR of NiL in *d*-DMSO; (b) ¹H NMR of NiL in *d*-DCl and *d*-DMSO (V/V, 1:1); (c) ¹H NMR of **1** after dissolved in *d*-DCl and *d*-DMSO (V/V, 1:1).

 $Figure \ S8. \ A symmetric \ unit \ of \ 1$

Figure S9. Space-filling model of the 8-fold interpenetrated framework along *a* axis

Figure S10. TG curve of 1

¹H NMR

¹H NMR

¹³C NMR

¹H NMR

¹³C NMR

¹H NMR

Figure S11. NMR spectra of β -hydroxy-1,2,3-triazoles

Figure S12. GC-MS analyses of the cyclic carbonates

Figure S13. Proposed mechanism for the cycloaddition of CO_2 with epoxides catalyzed by 1

Table S1. BET plot data for 1

BET Surface Area:	$527.7582 \pm 3.3610 \ m^2/g$
Slope:	$0.008244 \pm 0.000052 \text{ g/cm}^3 \text{ STP}$
Y-Intercept:	$0.000003 \pm 0.000003 \text{ g/cm}^3 \text{ STP}$
C:	2873.98242
Qm:	121.252 cm ³ /g STP
Correlation Coefficient:	0.9999595
Molecular Cross-Sectional Area:	0.1620 nm ²

Relative Pressure	elative Pressure Quantity Adsorbed		ative Pressure Quantity Adsorbed	
(P / P 0)	(cm ³ /g STP)			
0.020221646	120.6043	0.000171		
0.030745699	123.9053	0.000256		
0.055884706	128.4697	0.000461		
0.084060946	131.5677	0.000698		