Supporting information

Liquid/Vapor-Induced Reversible Dynamic Structural Transformation of a Three-Dimensional Cu-based MOF to a One-Dimensional MOF Showing Gate Adsorption

Atsushi Kondo,^{*1} Takayuki Suzuki, ¹ Ryosuke Kotani¹ and Kazuyuki Maeda^{*1} ¹Department of Applied Chemistry, Institute of Engineering, Tokyo University of Agriculture and Technology, 2-24-16, Naka-cho, Koganei, Tokyo 184-8588

Contents

Figure S1. TG curve of 1(3D) at a heating rate of 10 K min⁻¹ under N₂ flow (100 ml/min).

Figure S2. Nitrogen (black) and CO_2 (red) adsorption isotherm on 1(3D).

Figure S3. Le Bail pattern fit of synchrotron X-ray diffraction pattern **1(3D)** after ethanol immersion at room temperature.

Figure S4. FT-IR spectra of 1(3D) and 2(1D).

Figure S5. Crystal structure of 1(3D).

Table S1. CHN elemental analysis of the 3D MOF and the 1D MOF.

Table S2. Full width at half maximum (FWHM) of selected diffraction lines in XRD patterns.

Table S3. Results of the mixed solution adsorption by gas chromatography.

Figure S1. ATG curve of 1(3D) at a heating rate of 10 K min⁻¹ under air flow (150 ml/min).

Figure S2. Nitrogen (black) and CO_2 (red) adsorption isotherm on 1(3D).

Figure S3. Le Bail pattern fit of a synchrotron X-ray diffraction pattern of **1(3D)** after immersion in ethanol/water mixture at a room temperature. Observed, calculated, background, and differential patterns are shown in blue, red, right green, and purple. ($\lambda = 0.79917(2)$ Å)

Figure S4. FT-IR spectra of 1(3D) and 1(3D) after solvent treatment, which correspond to 2(1D).

Figure S5. Crystal structure of **1(3D)** along (a) *c* axis and (b) *a* axis, and (c) schematic representation of C-H··· π interaction between bpp ligands.

element	Calcd. ^a	2(1D) ^[2]	1(3D) after the solvent	
			treatment	
C/ %	49.30	49.09	49.15	
H/ %	4.50	4.57	4.52	
N/ %	8.80	8.75	8.83	

Table S1. CHN elemental analysis of 2(1D) and 1(3D) after the solvent treatment.

a. The values were calculated based on the chemical formula of $[Cu(BF_4)_2(bpp)_2]$.

	FWHM (°) of each diffraction line					
Sample	Miller indices					
	110	111	111	401	221	
Directly prepared one	0.167	0.192	0.234	0.307	0.241	
Converted one	0.271	0.222	0.376	0.348	0.381	

Table S2. Full width at half maximum (FWHM) of selected diffraction lines in XRD patterns.

Table S3. Results of the mixed solution adsorption by gas chromatography.

Mixture (volume %)	Peak ra	Adsorbed amount	
_	Before adsorption	After adsorption	per Cu atom
Benzene (50%)	52.0	49.0	1.9
Cyclohexane (50%)	48.0	51.0	-

References

E. Nishibori, M. Takata, K. Kato, M. Sakata, Y. Kubota, S. Aoyagi, Y. Kuroiwa, M. Yamakata, N. Ikeda, *Nucl. Instrum. Methods A*, 2001, 467-468, 1045.

[2] R. Kotani, A. Kondo, K. Maeda., Chem. Commun., 2012, 48, 11316.