## **Supplementary Information for**

## Technetium-99m complexes of L-arginine derivatives for targeting amino acid transporters

Maurício Morais,<sup>1,2,‡</sup> Vera F. C. Ferreira,<sup>1,‡</sup> Flávio Figueira,<sup>1</sup> Filipa Mendes,<sup>1</sup> Paula Raposinho,<sup>1</sup> Isabel Santos,<sup>1</sup> Bruno L. Oliveira,<sup>1,3</sup> João D. G. Correia<sup>1,\*</sup>

<sup>1</sup>Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), 2695-066 Bobadela LRS, Portugal

<sup>2</sup>Current address: Division of Imaging Sciences and Biomedical Engineering, King's College London, 4th Floor Lambeth Wing, St Thomas' Hospital, London SE1 7EH, United Kingdom

<sup>3</sup>Current address: Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, United Kingdom

Submitted as a full article to: Dalton Trans., Frontiers in Radionuclide Imaging and Therapy themed issue

Keywords: Amino acid transporters, Arginine, Cancer, Imaging, Rhenium, Technetium

\* Corresponding author: João D. G. Correia, Tel.: +351 21 994 62 33

E-mail address: jgalamba@ctn.tecnico.ulisboa.pt

<sup>†</sup> These authors contributed equally to the article.

### **RP-HPLC CHROMATOGRAMS**



**Figure S1.** RP-HPLC chromatograms of  $L^1$  and  $L^2$ . Macherey-Nagel C18 reversed-phase column (Nucleosil 100-5, 250 x 3 mm) with a flow rate of 0.5 mL/min. Eluents: aqueous 0.1 % CF<sub>3</sub>CO<sub>2</sub>H/MeOH. Gradient: t = 0-5 min: 10 % MeOH; 5-30 min: 10 $\rightarrow$ 100 % MeOH; 30-34 min: 100 % MeOH; 34-35 min: 100 $\rightarrow$ 10 % MeOH; 35-40 min: 10 % MeOH. Detection:  $\lambda$  = 220 nm.

#### **NMR SPECTRA**

# <sup>1</sup>H-NMR spectrum



Figure S2. Assigned <sup>1</sup>H and <sup>13</sup>C-NMR spectra of L<sup>1</sup>.









Figure S3. Assigned <sup>1</sup>H and <sup>13</sup>C-NMR spectra of L<sup>2</sup>.



Figure S4. RP-HPLC chromatograms of Tc1 and Tc2. Macherey-Nagel C18 reversed-phase column (Nucleosil 100-5, 250 x 3 mm) with a flow rate of 0.5 mL/min. Eluents: aqueous 0.1 %  $CF_3CO_2H/MeOH$ . Gradient: t = 0-5 min: 10 % MeOH; 5-30 min: 10 $\rightarrow$ 100 % MeOH; 30-34 min: 100 % MeOH; 34-35 min: 100 $\rightarrow$ 10 % MeOH; 35-40 min: 10 % MeOH.  $\gamma$  detection.



**Figure S5.** Stability of **Tc1** and **Tc2**. RP-HPLC chromatograms of **Tc1** and **Tc2** in phosphate buffered saline (PBS) pH 7.4 (**A**) and in PBS pH 7.4 with a 100 fold excess histidine (**B**) after 24 h at 37°C. Macherey-Nagel C18 reversed-phase column (Nucleosil 100-5, 250 x 3 mm) with a flow rate of 0.5 mL/min. Eluents: aqueous 0.1 %  $CF_3CO_2H/MeOH$ . Gradient: t = 0-5 min: 10 % MeOH; 5-30 min: 10 $\rightarrow$ 100 % MeOH; 30-34 min: 100 % MeOH; 34-35 min: 100 $\rightarrow$ 10 % MeOH; 35-40 min: 10 % MeOH.  $\gamma$  detection.



Figure S6. RP-HPLC analytical chromatograms of Re1 (UV detection, 220 nm) and Tc1 (γ-detection).