Electronic Supporting Information

β-Dicyanovinyl Substituted Porphyrinogen: Synthesis, Reversible Sensor for Picric acid among Explosives and Unique Sensor for Cyanide and Fluoride ions by Switching between various Porphyrinoid states

Mandeep K. Chahal and Muniappan Sankar*

Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee-247667, India

Table of Contents

	Page No
Figure S1. ¹ H NMR spectrum of OxP-MN (1).	2
Figure S2. ESI-MS(-) mass spectrum of OxP-MN (1).	3
Figure S3. Expanded ESI-MS(-) mass spectrum of OxP-MN (1).	4
Figure S4. (a) Hill plot for OxP-MN (1) and PA system; (b) Job's plot for the complexation of 1 and	
picric acid (PA): total concentration is constant (1.5 x 10^{-5} M); (c) Absorbance of 1 in CH ₂ Cl ₂ , normalized	
between the minimum absorbance was found at zero equiv of PA and the maximum absorbance.	
Figure S5. Absorption spectra of OxP-MN in the presence of various NAC's (picric acid (PA), 2,4-	6
dinitrophenol (2,4-DNP), 4-nitrophenol (4-NP), 4-nitrotoluene (4-NT), nitromethane (NM), nitrobenzene	
(NB), 1,3-dinitrobenzene (1,3-DNB), 3-nitrotoluene (3-NT), 2,4-dinitrotoluene (2,4-DNT), 4-nitroaniline	
(4-NA), phenol, 1-iodo-2-nitrobenzene (INB), 2-nitrophenol (2-NP)) in CH ₂ Cl ₂ .	
Figure S6. Selectivity of nitroaromatics at a wavelength of 756 nm in a solution having 1 + nitroaromatics	6
(blue bar) and 1 + nitroaromatics + PA (red bar) observed using absorbance spectral studies.	
Figure S7. ¹ H NMR spectra of neat Picric acid (PA) and OxP-MN (1) in the absence and presence of picric acid (PA).	7
Figure S8. The Benesi-Hildebrand plots constructed for evaluation of binding constants of F- with OxP-	7
MN (1).	
Figure S9. Job's plot for binding of fluoride ions by compound 1 indicating a 2:1 stoichiometry.	7
Figure S10. Absorption spectral changes upon addition of F ⁻ and CN ⁻ ions OxP-MN in different solvents.	8
Figure S11. MALDI-TOF mass spectrum of reduced porphyrin (H ₂ -TDtBHPP-MN, 7) in case of (OxP-	
MN•2F ⁻) using ascorbic acid.	
Figure S12. MALDI-TOF mass spectrum of reduced anionic porphyrin (H ₂ -TDtBHPP-TCE, 3) derived	<mark>9</mark>
from cyano adduct of oxoporphyrinogen (2) using ascorbic acid.	
Figure S13. ¹ H NMR spectrum of reduced anionic porphyrin (H ₂ -TDtBHPP-TCE, 3) derived from cyano	<mark>9</mark>
adduct of oxoporphyrinogen (2) using ascorbic acid.	
Figure S14. MALDI-TOF mass spectrum of reduced porphyrin (H2-TDtBHPP) obtained from OxP•2F-	<mark>10</mark>
using ascorbic acid as reductant.	
Figure S15. MALDI-TOF mass spectrum of reduced porphyrin (H ₂ -TDtBHPP) obtained from OxP•2CN-	<mark>10</mark>
using ascorbic acid as reductant.	
Figure S16. Spectral changes for the competitive recognition of CN- using a mixture of CN-and other	<mark>11</mark>
anions using OxP-MN (1).	
Figure S17. Absorption spectral features of OxP-MN (1) on sequential addition of PA and CN- ions,	11
respectively: path D (porphyrinogen to protonated porphodimethene), path E (protonated	

porphodimethene to OxP-MN), path F (OxP-MN to OxP-MN+CN-•2CN-).	
Figure S18. Absorption spectral features of OxP-MN (1) on sequential addition of CN- and PA,	12
respectively: path D' (porphyrinogen to OxP-MN+CN-•2CN-), path E' (OxP-MN+CN-•2CN- to OxP-	1
MN+CN ⁻), path F' (OxP-MN+CN ⁻ to anionic protonated porphodimethene).	1
Table S1. UV/Vis spectral data of porphyrinogen in CH_2Cl_2 at 298K.	5
Scheme S1. Response of OxP-MN (1) towards CN- and PA under indicator displacement assay	12
(IDA) without restriction on queue.	1

Figure S1. ¹H NMR spectrum of OxP-MN (1).

Figure S2. ESI-MS(-) mass spectrum of OxP-MN (1).

Figure S3. Expanded ESI-MS(-) mass spectrum of OxP-MN (1).

Table S1. UV/Vis spectral data of porphyrinogen in CH₂Cl₂ at 298K.

Compound	λ nm
OxP	511
OxP-MN (1)	507
β-Br ₈ OxP	344, 487

Figure S4. (a) Hill plot for OxP-MN (1) and PA system; (b) Job's plot for the complexation of 1 and picric acid (PA): total concentration is constant (1.5 x 10^{-5} M); (c) Absorbance of 1 in CH₂Cl₂, normalized between the minimum absorbance was found at zero equiv of PA and the maximum absorbance.

Figure S5. Absorption spectra of OxP-MN in the presence of various NAC's (picric acid (PA)), 2,4-dinitrophenol (2,4-DNP), 4-nitrophenol (4-NP), 4-nitrotoluene (4-NT), nitromethane (NM), nitrobenzene (NB), 1,3-dinitrobenzene (1,3-DNB), 3-nitrotoluene (3-NT), 2,4-dinitrotoluene (2,4-DNT), 4-nitroaniline (4-NA), phenol, 1-iodo-2-nitrobenzene (INB), 2-nitrophenol (2-NP)) in CH₂Cl₂.

Figure S6. Selectivity of nitroaromatics at a wavelength of 756 nm in a solution having 1 + nitroaromatics (blue bar) and 1 + nitroaromatics + PA (red bar) observed using absorbance spectral studies.

Figure S7. ¹H NMR spectra of neat Picric acid (PA) and OxP-MN (1) in the absence and presence of picric acid (PA).

Figure S8. The Benesi-Hildebrand plots constructed for evaluation of binding constants of F^- with OxP-MN (1).

Figure S9. Job's plot for binding of fluoride ions by compound 1 indicating a 2:1 stoichiometry.

Figure S10. Absorption spectral changes upon addition of F^- and CN^- ions OxP-MN in different solvents.

Figure S11. MALDI-TOF mass spectrum of reduced porphyrin (H_2 -TDtBHPP-MN, 7) in case of (OxP-MN•2F⁻) using ascorbic acid.

Figure S13. ¹H NMR spectrum of reduced anionic porphyrin (H_2 -TDtBHPP-TCE, **3**) derived from cyano adduct of oxoporphyrinogen (**2**) using ascorbic acid.

Figure S14. MALDI-TOF mass spectrum of reduced porphyrin (H_2 -TDtBHPP) obtained from OxP•2F⁻ using ascorbic acid as reductant.

Figure S15. MALDI-TOF mass spectrum of reduced porphyrin (H_2 -TDtBHPP) obtained from OxP•2CN⁻ using ascorbic acid as reductant.

Figure S16. Spectral changes for the competitive recognition of CN⁻ using a mixture of CN⁻ and other anions using OxP-MN (1).

Figure S17. Absorption spectral features of OxP-MN (1) on sequential addition of PA and CN^{-} ions, respectively: path D (porphyrinogen to protonated porphodimethene), path E (protonated porphodimethene to OxP-MN), and path F (OxP-MN to OxP-MN+CN⁻•2CN⁻).

Figure S18. Absorption spectral features of OxP-MN (1) on sequential addition of CN⁻ and PA, respectively: path D' (porphyrinogen to OxP-MN+CN⁻•2CN⁻), path E' (OxP-MN+CN⁻•2CN⁻ to OxP-MN+CN⁻), path F' (OxP-MN+CN⁻ to anionic protonated porphodimethene).

Scheme S1. Response of OxP-MN (1) towards CN^- and PA under indicator displacement assay (IDA) without restriction on queue.