Supporting Information

An Iron Germylene Complex Having Fe-H and Ge-H Bonds: Synthesis, Structure and Reactivity

Tara Prasad Dhungana, Hisako Hashimoto and Hiromi Tobita

Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai 980-8578, Japan

1. NMR and IR spectra

2. X-ray crystallographic analysis (additional comments) and crystal data

Figure S1. ¹H NMR spectrum of $Cp^{*}(CO)(H)Fe=Ge(H)\{C(SiMe_{3})_{3}\}$ (1) (400 MHz, $C_{6}D_{6}$).

Figure S2. ¹³C{¹H} NMR spectrum of Cp*(CO)(H)Fe=Ge(H){C(SiMe_3)_3 (1) (100 MHz, C_6D_6).

Figure S3. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(H)Fe=Ge(H){C(SiMe₃)₃ (1) (79.5 MHz, C₆D₆).

Figure S4. ¹H NMR spectrum of Cp*(CO)(D)Fe=Ge(D){C(SiMe₃)₃} (1-*d*₂) (400 MHz, C₆D₆).

Figure S5. ¹³C{¹H} NMR spectrum of Cp*(CO)(D)Fe=Ge(D){C(SiMe₃)₃} (1- d_2) (100 MHz, C₆D₆).

Figure S6. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(D)Fe=Ge(D){C(SiMe₃)₃} (1- d_2) (79.5 MHz, C₆D₆).

Figure S7. IR spectrum of Cp*(CO)(H)Fe=Ge(H){C(SiMe₃)₃} (1) (KBr).

Figure S8. Comparison of IR spectra of complexes 1 and $1-d_2$ (KBr).

Figure S9. ¹H NMR spectrum of $Cp^{*}(CO)(py)FeGeH_{2}{C(SiMe_{3})_{3}}$ (2) (400 MHz, C₆D₆).

The ratio	o of 2 : 1	Initial concentration of 2
2	1	(mol/L) in C ₆ D ₆
94	6	3.3×10^{-2}
93	7	2.5×10^{-2}
89	11	1.2×10^{-2}
86	14	8.3×10^{-3}
84	16	6.2×10^{-3}

Table S1 The ratio of 2:1 vs. the concentration of 2 in C_6D_6

Figure S10. ${}^{13}C{}^{1}H$ NMR spectrum of Cp*(CO)(py)FeGeH₂{C(SiMe₃)₃} (2) (100 MHz, C₆D₆).

Figure S11. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(py)FeGeH₂{C(SiMe₃)₃} (**2**) (79.5 MHz, C₆D₆).

Figure S12. IR spectrum of $Cp^*(CO)(py)FeGeH_2\{C(SiMe_3)_3\}$ (2) (KBr).

Figure S13. ¹H NMR spectrum of Cp*(CO)(MeCN)FeGeH₂{C(SiMe₃)₃} (3a) (400 MHz, C₆D₆)

Figure S14. NMR yield (%) of 3a vs. equivalent of MeCN added to 1 (5 mg) in C₆D₆.

Figure S15 ${}^{13}C{}^{1}H$ NMR spectrum of Cp*(CO)(MeCN)Fe-GeH₂{C(SiMe₃)₃} (3a) (100 MHz, C₆D₆).

Figure S16. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(MeCN)FeGeH₂{C(SiMe₃)₃} (**3a**) (79.5 MHz, C₆D₆).

Figure S17. IR spectrum of Cp*(CO)(MeCN)FeGeH₂{C(SiMe₃)₃} (3a) (KBr).

Figure S18. ¹H NMR spectrum of Cp*(CO)(MesCN)FeGeH₂{C(SiMe₃)₃} (**3b**) (400 MHz, C₆D₆).

Figure S19. ¹³C{¹H} NMR spectrum of Cp*(CO)(MesCN)FeGeH₂{C(SiMe₃)₃} (**3b**) (100 MHz, C₆D₆).

Figure S20. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(MesCN)FeGeH₂{C(SiMe₃)₃} (**3b**) (79.5 MHz, C₆D₆).

Figure S21. IR spectrum of Cp*(CO)(MesCN)FeGeH₂{C(SiMe₃)₃} (3b) (KBr).

Figure S22. ¹H NMR spectrum of Cp*(CO)(H)Fe=Ge(OCHMe₂){C(SiMe₃)₃} (4a) (400 MHz, C₆D₆).

Figure 23. ${}^{13}C{}^{1}H$ NMR spectrum of Cp*(CO)(H)Fe=Ge(OCHMe₂){C(SiMe₃)₃} (4a) (100 MHz, C₆D₆).

Figure S24. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(H)Fe=Ge(OCHMe₂){C(SiMe₃)₃} (**4a**) (79.5 MHz, C₆D₆).

Figure S25. IR spectrum of Cp*(CO)(H)Fe=Ge(OCHMe₂){C(SiMe₃)₃} (**4a**) (KBr). (The peak denoted by \blacklozenge is attributable to a product of the decomposition of **4a** during the IR measurement: The v_{co} for **4a** changed into this peak after the KBr sample was exposed to air.)

Figure S26. ¹H NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCHMePh){C(SiMe₃)₃}(4b) (dr. 8:1) (400 MHz, C₆D₆).

Figure S27. ¹³C{¹H} NMR Spectrum of Cp*(CO)(H)Fe=Ge{OCHMePh}{C(SiMe_3)_3} (4b) (100 MHz, C_6D_6).

Figure S28. ²⁹Si{¹H} NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCHMePh){C(SiMe_3)_3} (4b) (79.5 MHz, C₆D₆).

Figure S29. IR Spectrum of Cp*(CO)(H)FeGe(OCHMePh){C(SiMe₃)₃} (4b) (KBr).

Figure S30. ¹H NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Mes){C(SiMe₃)₃} (5a) (400 MHz, C₆D₆)

Figure S31. ¹³C{¹H} NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Mes){C(SiMe₃)₃} (**5a**) (100 MHz, C₆D₆).

Figure S33. IR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Mes){C(SiMe₃)₃} (5a) (KBr).

Figure S34. ¹H NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Ph){C(SiMe₃)₃} (**5b**) (400 MHz, C₆D₆).

Figure S35. ¹³C{¹H} NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Ph){C(SiMe₃)₃} (**5b**) (100 MHz, C₆D₆).

Figure S36. ²⁹Si{¹H} NMR Spectrum of Cp*(CO)(H)Fe=Ge(OCH₂Ph){C(SiMe₃)₃} (5b) (79.5 MHz, C₆D₆).

Figure S37. ¹H NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NPh){C(SiMe_3)_3}] (**6a** · 0.5C_7H_8) (400 MHz, C_6D_6).

Figure S38. ¹³C{¹H} NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NPh){C(SiMe_3)_3}] (6a) (100 MHz, C_6D_6).

Figure S39. ²⁹Si{¹H} spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NPh){C(SiMe_3)_3}] (6a) (79.5 MHz, C_6D_6).

Figure S40. IR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NPh){C(SiMe_3)_3}] (**6a** \cdot 0.5C₇H₈) (KBr).

Figure S41. ¹H-¹³C HMBC NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NPh){C(SiMe_3)_3}] (**6a**•0.5 C₇H₈) (400 MHz, C₆D₆).

Figure S42. ¹H NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NMes){C(SiMe_3)_3}] (**6b**) (400 MHz, C₆D₆).

Figure S43. ¹³C{¹H} NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NMes){C(SiMe_3)_3}] (**6b**) (100 MHz, C₆D₆).

Figure S44. ²⁹Si{¹H} NMR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NMes){C(SiMe_3)_3}] (**6b**) (79.5 MHz, C_6D_6).

Figure S45. IR spectrum of Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(OC(H)=NMes){C(SiMe_3)_3}] (**6b**) (KBr).

Figure S46. ¹H-¹³C HSQC NMR spectrum of $Cp^{*}(CO)Fe[\kappa^{2}(N,Ge)-Ge(H)(OC(H)=NMes){C(SiMe_{3})_{3}}]$ (**6b**) (400 MHz, C₆D₆).

Figure S47. ¹H NMR spectrum of Cp*(CO)(MesNC)FeSGeH₂{C(SiMe₃)₃} (7a) (400 MHz, C₆D₆).

Figure S49. ¹³C{¹H} NMR spectrum of Cp*(CO)(MesNC)FeSGeH₂{ $C(SiMe_3)_3$ }) (**7a**) (100 MHz. C₆D₆).

Figure S50. ¹H-¹³C HSQC NMR spectrum of Cp*(CO)(MesNC)FeSGeH₂{C(SiMe₃)₃}] (7a) (400 MHz, C₆D₆).

Figure S51. ²⁹Si{¹H} NMR spectrum of Cp*(CO)(MesNC)FeSGeH₂{C(SiMe₃)₃} (7a) (79.5 MHz, C₆D₆).

Figure S52. IR spectrum of Cp*(CO)(MesNC)FeSGeH₂{C(SiMe₃)₃} (7a) (KBr).

Figure S53. ¹H NMR spectrum of Cp*(CO)(PhNC)FeSGeH₂{C(SiMe₃)₃} (7b) (400 MHz, C₆D₆).

Figure S54. ¹³C NMR spectrum of Cp*(CO)(PhNC)FeSGeH₂{ $C(SiMe_3)_3$ } (**7b**) (100 MHz, C₆D₆).

2. X-ray crystallographic analysis (additional comments) and crystal data

Treatment of the positions of hydrogen atoms and some specific comments are as follows:

For $Cp^{*}(CO)(H)Fe=Ge(H)\{C(SiMe_{3})_{3}\}$ (1), the position of both hydrogen atoms of GeH and FeH groups were found from difference Fourier electron density map and were refined with isotropic thermal parameters.

For $Cp^*(CO)(py)FeGeH_2\{C(SiMe_3)_3\}$ (2), the position of the hydrogen atom of one of two GeH groups for 2 was found and refined isotropically.

For Cp*(CO)(2,4,6-Me₃C₆H₂CN)FeGe(H)₂{C(SiMe₃)₃ \cdot 0.5C₇H₈ (**3b** \cdot 0.5 C₇H₈), 0.5 molecule of C₇H₈ was contained in a unit cell of the crystal. The Ge atoms were disordered in two positions (Ge1:95%, Ge2:5%), and the Ge1 atom was refined anisotropically, while the Ge2 atom was refined isotropically. The positions of both hydrogen atoms bound to the Ge1 atom were found and refined isotropically.

For $Cp^*(CO)(H)Fe=Ge(OCH_2Mes)\{C(SiMe_3)_3\}$ (5a), the position of the hydrogen atom of Fe-H was not found from the difference Fourier electron density map. The positions of C(1) and O(2) were disordered in two positions (61%, 39%) and refined aniisotropically.

For Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(O-C(H)=NPh){C(SiMe_3)_3} (**6a**·C_7H_8), one molecule of toluene (C₇H₈) was incorporated in a unit cell in the crystal. The position of the hydrogen atom of Ge-H was found and refined isotropically.

For Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(O-C(H)=NMes){C(SiMe_3)_3}(6b), the position of the hydrogen atom of Ge-H was found and refined isotropically.

For $Cp^*(CO)(2,4,6-Me_3C_6H_2NC)Fe[SGeH_2{C(SiMe_3)_3}]$ (7a), The positions of both hydrogen atoms of two GeH groups were found and refined isotropically.

Table S2 Crystal	data and structure	refinement for	Cp*(CO)(H)Fe	$= Ge(H) \{ C(SiMe_3)_3 \} (1)$	1)
------------------	--------------------	----------------	--------------	---------------------------------	----

Empirical formula	C ₂₁ H ₄₄ Fe Ge O Si ₃
Formula weight	525.27
Temperature	150(2) K
Wavelength	0.71069 Å
Crystal system	Orthorhombic
Space group	$P2_{1}2_{1}2_{1}$
Unit cell dimensions	a = 11.4411(6) Å
	b = 13.8940(9) Å
	c = 16.9772(9) Å
Volume	2698.7(3) Å ³
Ζ	4
Density (calculated)	1.293 g/cm^3
Absorption coefficient	1.794 mm ⁻¹
<i>F</i> (000)	1112
Crystal size	0.25 x 0.25 x 0.25 mm ³
Theta range for data collection	1.89 to 27.47°
Index ranges	$-14 \le h \le 14, -18 \le k \le 17, -21 \le l \le 22$
Reflections collected	35610
Independent reflections	6169 [<i>R</i> (int) = 0.1125]
Reflections with $I > 2\sigma(I)$	5716
Completeness to $\theta = 25.24^{\circ}$	100.0 %
Absorption correction	Numerical
Max. and min. transmission	0.831153 and 0.695998
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	6169 / 0 / 266
Goodness-of-fit on F^2	1.081
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0462, wR2 = 0.0997
<i>R</i> indices (all data)	R1 = 0.0519, wR2 = 0.1024
Absolute structure parameter	0.020(10)
Largest diff. peak and hole	0.674 and -0.447 e Å ⁻³

 $\begin{aligned} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma [w(Fo^2)^2]]^{0.5}, \end{aligned}$

 $wR2 = [2[w(P0^{-1}Pc^{-1})]/2[w(P0^{-1})]]^{-1}$, calc $w=1/[\sigma^2 (Fo^2)+(0.0341P)^2+3.6620P]$ where $P=(Fo^2+2Fc^2)/3$.

Empirical formula	C ₂₆ H ₄₉ Fe Ge N O Si ₃	
Formula weight	604.37	
Temperature	140(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 8.4986(4) Å	
	b = 18.5971(10) Å	$\beta = 100.5527(11)^{\circ}$
	c = 20.0553(9) Å	
Volume	3116.1(3) Å ³	
Ζ	4	
Density (calculated)	1.288 g/cm ³	
Absorption coefficient	1.564 mm ⁻¹	
<i>F</i> (000)	1280	
Crystal size	0.25 x 0.20 x 0.20 mm ³	
Theta range for data collection	2.422 to 27.442°	
Index ranges	$-10 \le h \le 11, -24 \le k \le 24,$	$-25 \le l \le 25$
Reflections collected	42629	
Independent reflections	7068 [<i>R</i> (int) = 0.0713]	
Reflections with $I > 2\sigma(I)$	6218	
Completeness to $\theta = 25.242^{\circ}$	99.8 %	
Absorption correction	Numerical	
Max. and min. transmission	1.0000 and 1.0000	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	7068 / 0 / 316	
Goodness-of-fit on F^2	1.146	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0452, wR2 = 0.1430	
<i>R</i> indices (all data)	R1 = 0.0543, wR2 = 0.1487	
Largest diff. peak and hole	0.591 and -0.822 e Å ⁻³	

Table S3 Crystal data and structure refinement for $Cp^{*}(CO)(py)FeGeH_{2}{C(SiMe_{3})_{3}}$ (2)

$$\begin{split} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{0.5}, \\ calc \ w &= 1/[\sigma^2(Fo^2) + (0.1000P)^2 + 0.0000P] \text{ where } P = (Fo^2 + 2Fc^2)/3. \end{split}$$

Empirical formula	C _{34.5} H ₅₉ Fe Ge N O Si ₃
Formula weight	716.54
Temperature	140(2) K
Wavelength	0.71069 Å
Crystal system	Monoclinic
Space group	C2/c
Unit cell dimensions	a = 32.8319(14) Å
	$b = 12.2428(5) \text{ Å}$ $\beta = 109.345(2)^{\circ}$
	c = 20.4141(9) Å
Volume	7742.2(6) Å ³
Ζ	8
Density (calculated)	1.229 g/cm ³
Absorption coefficient	1.269 mm ⁻¹
<i>F</i> (000)	3048
Crystal size	$0.21\times0.17\times0.16\ mm^3$
Theta range for data collection	1.964 to 27.483°
Index range	$-42 \le h \le 41, -15 \le k \le 15, -26 \le l \le 26$
Reflections collected	55443
Independent reflections	8863 [<i>R</i> (int) = 0.1133]
Reflections with $I > 2\sigma(I)$	6985
Completeness to $\theta = 25.240^{\circ}$	100.0 %
Absorption correction	Numerical
Max. and min. transmission	1.0000 and 1.0000
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	8863 / 0 / 431
Goodness-of-fit on F^2	1.185
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0753, wR2 = 0.1393
<i>R</i> indices (all data)	R1 = 0.1019, wR2 = 0.1484
Largest diff. peak and hole	2.026 and −0.666 e Å ⁻³

Table S4 Crystallographic data and structure refinement for Cp*(CO)(2,4,6-Me_3C_6H_2CN)FeGe(H)_{2}{C(SiMe_3)_3} $\cdot 0.5C_7H_8$ (**3b** $\cdot 0.5C_7H_8$)

$$\begin{split} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo| \\ wR2 &= [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{0.5} \\ \text{calc } w &= 1 / [\sigma^2(Fo^2) + (0.0348P)^2 + 57.6127P] \text{ where } P = (Fo^2 + 2Fc^2)/3. \end{split}$$

Empirical formula	C ₃₁ H ₅₆ Fe Ge O ₂ Si ₃	
Formula weight	673.46	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	<i>P</i> 21/n	
Unit cell dimensions	a = 8.9028(5) Å	
	$b = 25.0183(11) \text{ Å}$ $\beta = 91.6874(14)^{\circ}$	
	c = 15.9058(6) Å	
Volume	3541.2(3) Å ³	
Ζ	4	
Density (calculated)	1.263 g/cm^3	
Absorption coefficient	1.384 mm ⁻¹	
<i>F</i> (000)	1432	
Crystal size	0.190 x 0.170 x 0.160 mm ³	
Theta range for data collection	2.429 to 27.484°	
Index ranges	$-11 \le h \le 11, -31 \le k \le 32, -20 \le l \le 20$	
Reflections collected	32577	
Independent reflections	8120 [R(int) = 0.1224]	
Reflections with $I > 2\sigma(I)$	6730	
Completeness to $\theta = 25.242^{\circ}$	99.9 %	
Absorption correction	Numerical	
Max. and min. transmission	0.8859 and 0.8578	
Refinement method	Full-matrix least-squares on F^2	
Data / restraints / parameters	8120 / 0 / 380	
Goodness-of-fit on F^2	1.164	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0635, wR2 = 0.1053	
<i>R</i> indices (all data)	R1 = 0.0825, wR2 = 0.1108	
Largest diff. peak and hole	$0.520 \text{ and } -0.582 \text{ e} \text{ Å}^{-3}$	

 Table S5 Crystal data and structure refinement for

 Cp*(CO)(H)Fe=Ge(OCH_2Mes){C(SiMe_3)_3} (5a)

 $\begin{aligned} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma [w(Fo^2 - Fc^2)^2] / \Sigma [w(Fo^2)^2]]^{0.5}, \\ w &= 1 / [\sigma^2 (Fo^2) + (0.0221P)^2 + 6.5474P] \text{ where } P = (Fo^2 + 2Fc^2)/3. \end{aligned}$

C ₃₅ H ₅₇ Fe Ge N O ₂ Si ₃	
736.52	
150(2) K	
0.71073 Å	
Triclinic	
<i>P</i> -1	
$a = 8.6833(7) \text{ Å}$ $\alpha = 77.427(2)^{\circ}$	
<i>b</i> = 12.7710(10) Å	$\beta = 86.298(3)^{\circ}$
c = 17.5545(9) Å	$\gamma = 80.826(2)^{\circ}$
1874.8(2) Å ³	
2	
1.305 g/cm^3	
1.315 mm ⁻¹	
780	
$0.40\times0.36\times0.35~mm^3$	
2.230 to 27.483°	
$-11 \le h \le 11, -16 \le k \le 16, -22 \le l \le 22$	
26076	
8525 [$R(int) = 0.0542$]	
7525	
99.4 %	
0.7690 and 0.7116	
Full-matrix least-squares on F^2	
8525 / 0 / 459	
1.059	
R1 = 0.0412, wR2 = 0.0933	
R1 = 0.0487, wR2 = 0.0970	
0.367 and -0.508 e Å ⁻³	
	C ₃₅ H ₅₇ Fe Ge N O ₂ Si ₃ 736.52 150(2) K 0.71073 Å Triclinic <i>P</i> -1 a = 8.6833(7) Å $b = 12.7710(10) Å$ $c = 17.5545(9) Å1874.8(2) Å321.305 g/cm31.315 mm-17800.40 × 0.36 × 0.35 mm32.230 to 27.483°-11≤ h \le 11, -16≤ k \le 16,260768525 [R(int) = 0.0542]752599.4 %0.7690 and 0.7116Full-matrix least-squares of8525 / 0 / 4591.059R1 = 0.0412$, $wR2 = 0.093R1 = 0.0487$, $wR2 = 0.0970.367 and -0.508 e Å-3$

Table S6 Crystal data and structure refinement for Cp*(CO)Fe[$\kappa^2(N,Ge)$ -Ge(H)(O-C(H)=NPh){C(SiMe_3)_3} (**6a** \cdot 0.5 C₇H₈)

$$\begin{split} RI &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{0.5}, \\ \text{calc } w &= 1 / [\sigma^2 (Fo^2) + (0.0425P)^2 + 1.3738P] \text{ where } P &= (Fo^2 + 2Fc^2) / 3. \end{split}$$

Empirical formula	C ₃₁ H ₅₅ Fe Ge N O ₂ Si ₃
Formula weight	686.47
Temperature	140(2) K
Wavelength	0.71073 Å
Crystal system	Orthorhombic
Space group	$Pna2_1$
Unit cell dimensions	a = 16.4196(8) Å
	b = 23.5939(8) Å
	c = 9.1101(3) Å
Volume	3529.3(2) Å ³
Ζ	4
Density (calculated)	1.292 g/cm^3
Absorption coefficient	1.391 mm ⁻¹
<i>F</i> (000)	1456
Crystal size	$0.21\times0.20\times0.17\ mm^3$
Theta range for data collection	2.126 to 27.432°
Index ranges	$-21 \le h \le 21, -30 \le k \le 30, -11 \le l \le 10$
Reflections collected	46667
Independent reflections	7744 [$R(int) = 0.1026$]
Reflections with $I > 2\sigma(I)$	6990
Completeness to $\theta = 25.242^{\circ}$	99.9 %
Absorption correction	Numerical
Max. and min. transmission	0.8686 and 0.8010
Refinement method	Full-matrix least-squares on F^2
Data / restraints / parameters	7744 / 1 / 373
Goodness-of-fit on F^2	1.069
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0444, wR2 = 0.0951
<i>R</i> indices (all data)	R1 = 0.0521, wR2 = 0.0989
Absolute structure parameter	0.075(9)
Largest diff. peak and hole	0.411 and -0.489 e Å ⁻³

Table S7 Crystal data and structure refinement for Cp*(CO)Fe[κ^2 -N,Ge)-Ge(H)(O-C(H)=NMes){C(SiMe_3)_3}(6b)

 $\begin{aligned} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{0.5}, \\ \text{calc } w=1/[\sigma^2(Fo^2) + (0.0421P)^2 + 3.0989P] \text{ where } P=(Fo^2 + 2Fc^2)/3. \end{aligned}$

Empirical formula	C ₃₁ H ₅₅ Fe Ge N O S Si ₃	
Formula weight	702.53	
Temperature	150(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_{1}/c$	
Unit cell dimensions	a = 12.8979(6) Å	
	b = 16.6926(6) Å	$\beta = 97.6371(13)^{\circ}$
	c = 17.0382(7) Å	
Volume	3635.8(3) Å ³	
Ζ	4	
Density (calculated)	1.283 g/cm^3	
Absorption coefficient	1.405 mm ⁻¹	
<i>F</i> (000)	1488	
Crystal size	$0.41\times0.40\times0.27~mm^3$	
Theta range for data collection	1.593 to 27.452°	
Index ranges	$-16 \le h \le 16, -21 \le k \le 2$	$1, -22 \le 1 \le 22$
Reflections collected	54145	
Independent reflections	8270 [<i>R</i> (int) = 0.0846]	
Reflections with $I > 2\sigma(I)$	7095	
Completeness to $\theta = 25.242^{\circ}$	99.9 %	
Absorption correction	Numerical	
Max. and min. transmission	0.8181 and 0.6855	
Refinement method	Full-matrix least-squares	on F^2
Data / restraints / parameters	8270 / 0 / 377	
Goodness-of-fit on F^2	1.044	
Final <i>R</i> indices $[I > 2\sigma(I)]$	R1 = 0.0431, wR2 = 0.128	87
R indices (all data)	R1 = 0.0539, wR2 = 0.136	67
Largest diff. peak and hole	0.627 and -0.372 e Å $^{\text{-3}}$	

Table S8 Crystal data and structure refinement forCp*(CO)(2,4,6-Me_3C_6H_2NC)Fe[SGeH_2{C(SiMe_3)_3}] (7a)

 $\begin{aligned} R1 &= \Sigma ||Fo| - |Fc|| / \Sigma |Fo|. \\ wR2 &= [\Sigma[w(Fo^2 - Fc^2)^2] / \Sigma[w(Fo^2)^2]]^{0.5}, \\ \text{calc } w &= 1/[\sigma^2(Fo^2) + (0.1000P)^2 + 0.0000P] \text{ where } P &= (Fo^2 + 2Fc^2)/3. \end{aligned}$