The Photocurrent Response in the Perovskite Device Based on Coordination Polymer: Structure, Topology, Band Gap and Matched Energy Level

Hai-Qiang Luo, ^a Xiao-Han Xing, ^a Pan Zhang, ^a Zhi-Shuo Yan, ^a Qing-Feng Zhou, ^a Yun Gong ^{*a} and Jian-Hua Lin ^{*a, b}

^a Department of Applied Chemistry, College of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China Tel: +86-023-65678932 E-mail: gongyun7211@cqu.edu.cn

^b State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China Tel: +86-010-62753541 E-mail: jhlin@pku.edu.cn

Fabrication of Device Based on FTO/ Compact TiO₂ (cTiO₂)/ Perovskite CH₃NH₃PbI₃/ CP 2

The fabrication of device based on FTO/compact TiO_2 ($cTiO_2$)/perovskite $CH_3NH_3PbI_3/CP$ **2** is according to the literature method. ¹

Firstly, fluorine doped tin oxide (FTO, 12-14 μ S/m) glass substrate was ultrasonic bath washed successively in acetone, ethanol and deionized water for 10 min each.

Secondly, a compact TiO₂ blocking layer was prepared with sol-gel method. The TiO₂ sol-gel used here was prepared by mixing titanium tetraisopropoxide (TTIP) contained solution A (TTIP, ethanol) and acid solution B (ethanol, HCl, H₂O). 0.1 mL of the sol-gel was dropped onto FTO with the effective area of the TiO₂ film maintained at 1.0×1.0 cm² through a Scotch tape mask. Then the substrate was calcined at 450 °C for 1 hour in

air. After cooling to room temperature, the surface of the TiO_2 film was further deposited by 0.1 mL of a 40 mM aqueous solution of $TiCl_4$. Then the $TiCl_4$ treated substrate was again calcined at 500 °C for 15 min to obtain the compact TiO_2 layer ($cTiO_2$).

Thirdly, 2 mg perovskite (CH₃NH₃PbI₃) (homemade and characterized by powder Xray diffraction, please see **Fig. S1**) was dissolved in 2 mL N, N'-dimethylformamide (DMF), then 0.1 mL of the perovskite solution was dropped onto the compact TiO_2 surface. The substrate was then dried by an IR lamp on to remove the remaining solvent.

The fourth step is to deposit CP **2** on the above perovskite layer. 2 mg CP **2** was ultrasonicated in 2 mL ethanol, then 0.4 or 0.1 mL of the mixture (CP **2** mass loading: 0.4 mg or 0.1 mg) was dropped on the perovskite and dried by an IR lamp.

The above fabricated FTO/ $cTiO_2$ / perovskite / CP **2** device was used as the working electrode from the back side for the detection of the photocurrent generation with a platinum foil and a AgCl/Ag electrode as the counter electrode and the reference electrode, respectively. 0.2 M Na₂SO₄ solution (80 mL) was used as the electrolyte.

<i>CP 1</i>			
Mn(1)-O(4)#1	2.140(2)	Mn(1)-O(6)	2.263(3)
Mn(1)-O(2)#2	2.163(2)	Mn(1)-O(1)	2.177(3)
O(4)#1-Mn(1)-O(3)#3	96.85(10)	O(4)#1-Mn(1)-O(5)	84.03(9)
O(3)#3-Mn(1)-O(6)	177.80(11)	O(1)-Mn(1)-O(3)#3	92.21(10)
<i>CP 2</i>			
Cd(1)-O(5)	2.274(4)	Cd(1)-O(3)#4	2.493(3)

Table S1 Selected bond lengths (Å) and angles (°) for CPs 1-3

Cd(1)-O(4)#4	2.330(3)	Cd(1)-O(2)#5	2.359(3)
O(2)#5-Cd(1)-O(3)#6	173.35(11)	O(4)#4-Cd(1)-O(3)#4	53.84(12)
O(3)#6-Cd(1)-O(3)#4	97.38(12)	O(2)#5-Cd(1)-O(2)	105.03(12)
СР 3			
Mn(1) - O(1)	2.127(3)	Mn(1) - O(9)	2.233(3)
Mn(2)-O(4)#7	2.072(3)	Mn(2)-O(8)	2.324(3)
O(10)-Mn(1)-O(9)	82.23(12)	O(7)-Mn(1)-O(9)	179.05(11)
O(4)#7-Mn(2)-O(8)	101.09(11)	O(10)-Mn(1)-O(7)	96.82(10)

Symmetry transformations used to generate equivalent atoms:

#1 -x,-y+1,-z	#2 -x,-y+1,-z+1	#3 -x,y+1/2,-z+1/2	#4 x-1/2,y+1,-z+1/2
#5 -x+1/2,y+1/2,z	#6-x+1,y+1/2,-z+1/2	#7 x-1,y,z	

Fig.S1 The PXRD patterns of CPs 1 (a), 2 (b), 3 (c) and the perovskite CH₃NH₃PbI₃ (d)

Fig.S2 Thermogravimetric curves of CPs 1 (red), 2 (green) and 3 (pink).

(b)

(**d**)

Fig. S3 The SEM images of CP 2 before (a, b) and after immersion in Na₂SO₄ aqueous

solution (c, d).

Fig. S4 UV-vis absorption spectra at room temperature for the free organic ligand H_2L and CPs 1-3.

Fig. S5 The diffuse reflectance spectra (DRS) for CPs **1-3** in the transformed Kubelka– Munk functions.

Fig. S6 CVs of 1-GCE in a $0.2 \text{ M Na}_2\text{SO}_4$ solution (80 mL) in the potential range from - 1.6 to 1.2 V vs SCE at different scan rates.

Fig. S7 CVs of **3-GCE** in a 0.2 M Na₂SO₄ solution (80 mL) in the potential range from - 1.6 to 1.2 V vs SCE at different scan rates.

Fig. S8 CVs of 2-GCE in a 0.2 M Na_2SO_4 solution (80 mL) in the potential range from - 1.6 to 1.2 V vs SCE at different scan rates.

Fig. S9 Solid-state emission spectra at room temperature for the free ligand H₂L and CP2.

Fig. S10 Nyquist plots (Z' vs. -Z'') of the three-electrode system at E = 0 V vs AgCl/Ag in Na₂SO₄ aqueous solution (0.2 M, 80 mL) in the absence and presence of visible light illumination (650 nm > λ > 350 nm) with the CP **2**-modified FTO slide as working electrode.

(a)

(b)

Fig. S11 Cross-section (a-b) and oblique-view SEM images of FTO / TiO_2 / $CH_3NH_3PbI_3$ / CP 2 device (c-d).

(a)

(b)

Fig. S12 Top-view SEM images of the compact TiO_2 layer (a, b); the perovskite $CH_3NH_3PbI_3$ on the top of the compact TiO_2 layer (c, d) and CP 2 (e, f) on the top of the perovskite $CH_3NH_3PbI_3$.

(a)

Fig. S13 Elemental mapping and total element amount of the perovskite $CH_3NH_3PbI_3$ on the top of the compact TiO₂ layer (a) and CP 2 (b) on the top of the perovskite

Fig. S14 CVs of CP **2**- or PbI₂ - modified FTO slices in a 0.2 M Na₂SO₄ solution (80 mL) in the potential range from -1.0 to 1.0 V vs AgCl/Ag at a scan rate of 0.01 V·s⁻¹ with (solid line) and without (dotted line) the visible light illumination (650 nm > λ > 350 nm).

Fig. S15 CVs of FTO/cTiO₂/ perovskite / CP **2** in a 0.2 M Na₂SO₄ solution (80 mL) from -1.0 to 1.0 V vs AgCl/Ag at 0.01 V·s⁻¹ with (solid line) and without (dotted line) the visible light illumination (650 nm > λ > 350 nm) at 100 mW·cm⁻². CP **2** mass loading: 0.4 mg (sapphire) or 0.1 mg (blue).

Reference

 (a) Chen, S. S.; Lei, L.; Yang, S. W.; Liu, Y.; Wang, Z. S. ACS Appl. Mater. Interfaces, 2015, 7, 25770; (b) Yue, Y. F.; Umeyama, T.; Kohara, Y.; Kashio, H.; Itoh, M.; Ito, S.; Sivaniah, E.; Imahori, H. J. Phys. Chem. C, 2015, 119, 22847.