Copper ion interaction with the RNase catalytic site fragment of the Angiogenin protein: an experimental and theoretical investigation

Antonio Magrì, ^a Giovanni Tabbì,^a Raffaella Breglia,^b Luca De Gioia,^c Piercarlo Fantucci,^c Maurizio Bruschi^b* Raffaele P. Bonomo, ^d* Diego La Mendola ^e*

^aConsiglio Nazionale delle Ricerche, Istituto di Biostrutture e Bioimmagini (IBB-CNR), Via P. Gaifami 18, 95126 Catania (Italy)

^bDipartimento di Scienze dell'Ambiente e della Terra, Università di Milano-Bicocca, Piazza della Scienza 1 20126 Milan (Italy)

^cDipartimento di Biotecnologie e Bioscienze, Università di Milano-Bicocca, Piazza della Scienza 2 20126-Milan (Italy)

^dDipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale A. Doria 6, 95125 Catania, (Italy)

^eDipartimento di Farmacia, Università di Pisa, Via Bonanno Pisano 6, 56126 Pisa (Italy)

Figure S1 Uv-Vis spectra of Cu-Ac-PVHLDQ-NH₂ (black), Cu-PVHLNQ-NH₂ (red), Cu-LVHLDQ-NH₂ (blu) systems recorded at different pH values. At pH=11, in the system Cu-PVHLNQ-NH₂, a precipitation phenomenon was observed altering the Abs value.

Complex	ΔE	ΔE
·	BP86/SVP	B3LYP/BS1
CuL _A -1	25.3	24.7
CuL _A -2	10.3	12.6
CuL _A -3	0.0	0.0
CuL _A -W ₂₂ -2	39.3	26.7
CuL _A -W ₂₂ -3	0.0	0.0
CuL _{B1} -1	4.2	7.3
CuL _{B1} -2	0.7	4.2
CuL _{B1} -3	4.4	4.6
CuL _{B2} -1	5.3	7.3
CuL _{B2} -2	5.4	7.6
CuL _{B2} -3	0.0	0.0
CuL _{B1} -W ₂₂ -2	16.9	19.2
CuL _{B1} -W ₂₂ -3	12.3	18.3
CuL _{B2} -W ₂₂ -2	47.1	41.3
CuL _{B2} -W ₂₂ -3	0.0	0.0
CuL _C -1	16.5	19.4
CuL _c -2	7.0	7.6
CuL _c -3	0.0	0.0
CuL _C -W ₂₂ -2	0.0	0.0
CuL _c -W ₂₂ -3	1.4	4.1

Table S1 Relevant stabilities in (kcal mol⁻¹) of isomers of the $[Cu(Ac-PVHLDQ-NH_2)]^-$, $[Cu(Ac-PVHLNQ-NH_2)]^0$, and $[Cu(Ac-LVHLDQ-NH_2)]^-$ complexes computed using the BP86/SVP and the B3LYP/BS1 schemes on the geometries computed at the BP86/SVP level (for labels see the text).

Table S2 EPR g-tensors of the $[Cu(Ac-PVHLDQ-NH_2)]^-$, $[Cu(Ac-PVHLNQ-NH_2)]^0$ and $[Cu(Ac-LVHLDQ-NH_2)]^-$ complexes computed using the B3LYP functional and the BS1 basis set on geometries optimized at the RI-BP86/SVP level of theory (for labels see the text)

Complex	$g_z \equiv g_{ }$	gx	gy	g iso	
CuL _A -1	2.179	2.036	2.084	2.099	
CuL _A -3	2.146	2.040	2.046	2.077	
CuL _A -W ₂₂ -2	2.177	2.051	2.062	2.096	
CuL _A -22W-3	2.168	2.045	2.065	2.093	
Expt.	2.224				
CuL _{B1} -1	2.166	2.029	2.089	2.095	
CuL _{B1} -2	2.153	2.037	2.062	2.084	
CuL _{B1} -3	2.145	2.041	2.050	2.079	
CuL _{B2} -1	2.152	2.042	2.054	2.083	
CuL _{B2} -2	2.167	2.046	2.060	2.091	
CuL _{B2} -3	2.138	2.041	2.044	2.074	
CuL _{B1} -W ₂₂ -2	2.159	2.048	2.053	2.087	
CuL_{B1} - W_{22} -3	2.174	2.056	2.058	2.096	
CuL_{B2} - W_{22} -2	2.156	2.047	2.051	2.085	
CuL _{B2} -W ₂₂ -3	2.152	2.045	2.051	2.083	
Expt.	2.220				
CuL _C -1	2.160	2.027	2.074	2.087	
CuL _C -2	2.153	2.047	2.049	2.083	
CuL _c -3	2.144	2.037	2.047	2.076	
$CuL_{C}-W_{22}-2$	2.156	2.036	2.059	2.084	
CuL _C -W ₂₂ -3	2.163	2.043	2.061	2.089	
Expt.	2.230				

Table S3 Mulliken atomic spin densities for the Cu ion and ligand atoms of $[Cu(Ac-PVHLDQ-NH_2)]^-$, $[Cu(Ac-PVHLNQ-NH_2)]$ and $[Cu(Ac-LVHLDQ-NH_2)]^-$ complexes computed using the B3LYP functional and the BS1 basis set on geometries optimized at the RI-BP86/SVP level of theory (for complex labels see the main text)

Complex	Cu	N _{His}	N _{Leu}	N _{Asp}	O _{Asp} ; O1 _{Asn} ; O2 _{Asn}	$O_{Val}; O_w$
CuL _A -1	0.60	0.03	0.11	0.12	0.11	0.01
CuL _A -2	0.57	0.06	0.09	0.12	0.11	0.00
CuL _A -3	0.56	0.05	0.12	0.13	0.09	0.00
CuL _A -W ₂₂ -2	0.52	0.06	0.14	0.11	0.06	0.00
CuL _A -W ₂₂ -3	0.61	0.06	0.10	0.13	006	0.00
CuL _{B1} -1	0.60	0.04	0.18	0.10	0.03	0.01
CuL _{B1} -2	0.57	0.05	0.15	0.12	0.04	0.00
CuL _{B1} -3	0.55	0.05	0.18	0.12	0.04	0.00
CuL _{B2} -1	0.58	0.04	0.16	0.15	0.04	0.00
CuL _{B2} -2	0.58	0.04	0.16	0.15	0.04	0.00
CuL _{B2} -3	0.60	0.04	0.13	0.12	0.05	0.00
CuL _{B1} -W ₂₂ -2	0.59	0.06	0.12	0.12	0.06	0.00
CuL _{B1} -W ₂₂ -3	0.62	0.05	0.15	0.12	0.04	0.00
CuL _{B2} -W ₂₂ -2	0.60	0.05	0.15	0.12	0.04	0.00
CuL _{B2} -W ₂₂ -3	0.59	0.06	0.13	0.12	0.06	0.00
CuL _c -1	0.59	0.05	0.10	0.12	0.11	0.00
CuL _C -2	0.57	0.05	0.08	0.13	0.10	0.00
CuL _c -3	0.55	0.04	0.09	0.15	0.13	0.00
CuL _c -W ₂₂ -2	0.59	0.05	0.12	0.15	0.06	0.00
CuL _C -W ₂₂ -3	0.61	0.06	0.11	0.13	0.07	0.00