Low Temperature Synthesis Study on Metal-Organic Framework CPO-27: Investigating Metal, Solvent and Base Effects down to -78 °C

S. M. Vornholt[‡], S. E. Henkelis^{‡*}, R. E. Morris

School of Chemistry, Purdie Building, North Haugh, St Andrews, Fife, KY16 9ST, UK

SUPPORTING INFORMATION

Table of Contents

1.	PXRD Patterns	S1
1.1.	<i>CPO-27-Mg1</i> in MeOH/NaOH (3h, 6h)	S1, S2
1.2.	<i>CPO-27-Ni1</i> in MeOH/NaOH (3h, 6h)	S3, S4
1.3.	<i>CPO-27-Zn1</i> in MeOH/NaOH (3h)	S5
1.4.	<i>CPO-27-Zn2</i> in MeOH/TEA (3h)	S6
1.5.	CPO-27-Zn 3 in MeOH/no base (3h)	S7
1.6.	<i>CPO-27-Zn5</i> in THF/NaOH (3h)	S8
1.7.	<i>CPO-27-Zn6</i> in THF/TEA (3h, 6h)	S9, S10
2.	Pawley Refinement of $[Zn(H_2dhtp)(H_2O)_2]$	S11
3.	SEM images	S12
3.1.	CPO-27-Mg 1 in MeOH/NaOH	S12
3.2.	<i>CPO-27-Ni1</i> in MeOH/NaOH	S13
3.3.	<i>CPO-27-Zn2</i> in MeOH/TEA	S14
3.4.	CPO-27-Zn 3 in MeOH/no base	S15
3.5.	CPO-27-Zn4 in THF/no base	S16
3.6.	<i>CPO-27-Zn5</i> in THF/NaOH	S17
3.7.	<i>CPO-27-Zn6</i> in THF/TEA	S18

1. PXRD Patterns

1.1 CPO-27-Mg1 in MeOH/NaOH

Fig. S1. Powder X-ray diffraction patterns for CPO-27-Mg**1** taken half-way through the synthesis (3h). -78 °C – black; -20 °C – red; -40 °C – blue; ambient – pink; 78 °C – green; 0 °C – navy. All diffraction run for 3 hours with the exception of 0 °C which was run for 12 hours.

Fig. S2. Powder X-ray diffraction patterns for fully formed CPO-27-Mg1. -78 °C – black; -40 °C – red; -20 °C – blue; 0 °C – pink; ambient – green; 78 °C – navy.

1.2. CPO-27-Ni1 in MeOH/NaOH

Fig. S3. Powder X-ray diffraction patterns for CPO-27-Ni1 taken half-way through the synthesis (3h). -20 °C – black; 0 °C – red; ambient – blue; 78 °C – pink.

Fig. S4. Powder X-ray diffraction patterns for fully formed CPO-27-Ni1. -20 °C – black; 0 °C – red; ambient – blue; 78 °C – pink.

1.3. CPO-27-Zn1 in MeOH/NaOH

Fig. S5. Powder X-ray diffraction patterns for CPO-27-Zn1 in MeOH/NaOH taken half-way through the synthesis (3h). -78 °C – black; -40 °C – red; -20 °C – blue; 0 °C – pink; ambient – green; 78 °C – navy.

1.4. CPO-27-Zn2 in MeOH/TEA

Fig. S6. Powder X-ray diffraction patterns for CPO-27-Zn**2** in MeOH/TEA taken half-way through the synthesis (3h). -78 °C – navy; -40 °C – green; -20 °C – pink; 0 °C – blue; ambient – red; 78 °C – black

1.5. CPO-27-Zn3 in MeOH/no base

Fig. S7. Powder X-ray diffraction patterns for CPO-27-Zn**3** in MeOH without base taken half-way through the synthesis (3h). 0 °C – black; ambient – red; 78 °C – blue.

1.6. CPO-27-Zn5 in THF/NaOH

Fig. S8. Left - Powder X-ray diffraction patterns for CPO-27-Zn**5** in THF/NaOH taken half-way through the synthesis (3h). -78 °C – navy; -40 °C – green; -20 °C – pink; 0 °C – blue; ambient – red; 78 °C – black. Right – Powder X-ray diffraction pattern for CPO-27-Zn**5** in THF/NaOH at -40 °C.

Fig. S9. Powder X-ray diffraction patterns for CPO-27-Zn**6** in THF/TEA taken half-way through the synthesis (3h). -78 °C – navy; -40 °C – green; -20 °C – pink; -0 °C – blue; ambient – red; 78 °C – black.

Fig. S10. Powder X-ray diffraction patterns for fully formed CPO-27-Zn**6** in THF/TEA. -78 °C – navy; -40 °C – green; -20 °C – pink; 0 °C – blue; ambient – red; 78 °C – black.

2. Pawley Refinement of [Zn(H₂dhtp)(H₂O)₂]

Fig. S11. Topas Pawley refinement for [Zn(H₂dhtp)(H₂O)₂] afforded from a CPO-27–Zn**3** synthesis attempt in MeOH. Experimental in blue, calculated model in red and the calculated difference plot in grey.²²

3. SEM images

3.1. CPO-27-Mg1 in MeOH/NaOH

Fig. S12. SEM images for CPO-27-Mg1 afforded from MeOH/NaOH. From left to right, 1 mm; 100 μm; 10 μm

3.2. CPO-27-Ni1 in MeOH/NaOH

Fig. S13. SEM images for CPO-27-Ni1 afforded from MeOH/NaOH. From left to right, 1 mm; 50 μm; 10 μm

3.3. *CPO-27-Zn2* in MeOH/TEA

Fig. S14. SEM images for CPO-27-Zn2 afforded from MeOH/TEA. From left to right, 1 mm; 50 μm; 20 μm

3.4. CPO-27-Zn3 in MeOH/no base

Fig. S15. SEM images for CPO-27-Zn **3** afforded from MeOH without base. From left to right, 1 mm; 50 μ m; 20 μ m

3.5. CPO-27-Zn4 in THF/no base

Fig. S16. SEM images for CPO-27-Zn4 afforded from THF without base. From left to right, 1 mm; 100 $\mu m;$ 20

3.6. CPO-27-Zn5 in THF/NaOH

3.7. *CPO-27-Zn6* in THF/TEA

Fig. S18. SEM images for CPO-27-ZnG afforded from THF/TEA. From left to right, 1 mm; 100 $\mu m;$ 10 μm