Electronic supplementary information

LaTiO₂N-LaCrO₃: continuous solid solutions towards enhanced photocatalytic H₂ evolution under visible-light irradiation

Jinwen Shi, ^{*a,b} Yazhou Zhang, ^a Zhaohui Zhou, ^{*a,b} Yixiang Zhao, ^b Jingyuan Liu, ^b Hongbing Liu, ^b Xiang Liao, ^b Yuchao Hu, ^{a,c} Daming Zhao^a and Shaohua Shen ^{*a,b}

^aInternational Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China. E-mail addresses: jinwen_shi@mail.xjtu.edu.cn (J. Shi), zzhlax@mail.xjtu.edu.cn (Z. Zhou), shshen_xjtu@mail.xjtu.edu.cn (S. Shen) ^bDepartment of New Energy Science and Engineering, School of Energy and Power Engineering, Xi'an Jiaotong University (XJTU), 28 West Xianning Road, Xi'an 710049, China ^cSichuan Energy Internet Research Institute, Tsinghua University, 36 South Haichang Road, Chengdu 610213, China

Calculation of the tolerance factor

Goldschmidt proposed the tolerance factor (t) for ABX₃-type perovskites,¹

$$t = \frac{r_A + r_X}{\sqrt{2}(r_B + r_X)} \tag{S1}$$

in which r_A , r_B , and r_X are the ionic radii of A, B and X located in 12-, 6-, and (2 + 4)-fold coordinated environments, respectively. In the case of complex perovskites, in which more than one ion occupies the A, B and/or X sites, the average radius of the ions on each site is used for r_A and r_B, respectively. Herein, the Shannon effective ionic radii (in pm) of related ions were employed as follows:² La³⁺: 136 (12) for A-site occupancy; Ti⁴⁺: 60.5 (6) and Cr³⁺: 61.5 (6) for Bsite occupancy; O²⁻: 140 (6) and N³⁻: 150 (6) for X-site occupancy. Data in brackets are coordination numbers (CN). Consequently, The t values of LaTiO₂N, $(LaTiO_2N)_{0.9}(LaCrO_3)_{0.1}$ (i.e., LaTi_{0.9}Cr_{0.1}O_{2.1}N_{0.9}), $(LaTiO_2N)_{0.8}(LaCrO_3)_{0.2}$ (i.e., LaTi_{0.8}Cr_{0.2}O_{2.2}N_{0.8}), $(LaTiO_2N)_{0.7}(LaCrO_3)_{0.3}$ $LaTi_{0.7}Cr_{0.3}O_{2.3}N_{0.7}),$ $(LaTiO_2N)_{0.6}(LaCrO_3)_{0.4}$ (i.e., (i.e., LaTi_{0.6}Cr_{0.4}O_{2.4}N_{0.6}), (LaTiO₂N)_{0.4}(LaCrO₃)_{0.6} (i.e., LaTi_{0.4}Cr_{0.6}O_{2.6}N_{0.4}) and LaCrO₃ were calculated to be 0.96902, 0.96897, 0.96893, 0.96888, 0.96883, 0.96874 and 0.96854, respectively.

Notes and references

1. V. M. Goldschmidt, Naturwissenschaften, 1926, 14, 477-485.

2. R. D. Shannon, Acta Crystallographica Section A, 1976, 32, 751-767.

Fig. S1. (a) SEM image and (b-f) elemental mapping images of (b) La, (c) Ti, (d) Cr, (e) O and (f) N for LTON-0.3LCO. Scale bar: $2 \mu m$.

Fig. S2. FTIR spectra for LTON-*x*LCO samples (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0) in the range from 1600 to 500 cm⁻¹.

Fig. S3. SEM images for LTON-*x*LCO samples with x = (a, b) 0.1, and (c, d) 0.6. Scale bar: $(a, c) 1 \mu m$, (b, d) 100 nm.

Fig. S4. (a, c, e) TEM and (b, d, f) HRTEM images for LTON-*x*LCO samples with x = (a, b) 0.0, (c, d) 0.3, and (e, f) 1.0. Scale bar: (a, c, e) 200 nm, (b, d, f) 10 nm.

Sample	Cr				Ν
	2p _{3/2}		2p _{1/2}		1s
LTON-0.0LCO	_a	_a	_a	_ <i>a</i>	395.3
LTON-0.1LCO	575.3	578.4	585.2	589.7	395.3
LTON-0.2LCO	575.9	578.5	585.5	589.1	395.4
LTON-0.3LCO	576.0	579.1	585.6	588.2	395.4
LTON-0.4LCO	576.0	578.6	585.6	588.2	395.5
LTON-0.6LCO	576.3	579.0	585.8	588.7	395.5
LTON-1.0LCO	576.0	578.2	585.7	587.8	_a

Table S1. Binding energies (unit: eV) of Cr 2p and N 1s levels for LTON-*x*LCO samples (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.6 and 1.0).

^{*a*} Not detected.