Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

"Electronic Supplementary Information (ESI) to be published electronically"

FOR

Palladium(II) complexes of N, N-diphenylacetamide based thio/selenoethers

and flower shaped Pd₁₆S₇ and prismatic Pd₁₇Se₁₅ nano-particles tailored as

catalysts for C-C and C-O coupling

Poornima Singh,^a and Ajai Kumar Singh^a

^aDepartment of Chemistry, Indian Institute of Technology Delhi, Hauzkhas, New Delhi-110016, India

E-mail address: aksingh@chemistry.iitd.ac.in

Tel: 91 (011) 25691379

Contents

Page. No.

1.	Multi nuclear NMR and mass spectra	of P1	
		Figures S1–S3	3–4
2.	Multi nuclear NMR and mass spectra	of L1	
		Figures S4–S6	5–6
3.	Multi nuclear NMR of C1		
		Figures S7–S8	7
4.	Multi nuclear NMR and mass spectra	of L2	
		Figures S9–S12	8–9
5.	Multi nuclear NMR of C2		
		Figures S13–S15	10-11
6.	Elemental analyses of bulk sample of	flower shaped Pd ₁₆ S ₇ nane	oparticles
		Table S1	12
7.	Elemental analyses of bulk sample of	Prismatic Pd ₁₇ Se ₁₅ nanopa	articles
		Table S2	12
8.	Crystal data and structural refinement	t parameters of P1, L1, L2	, C1 & C2
		Table S3	13
9.	Selected bond lengths and bond angle	es of P1, L1, L2, C1 & C2	
		Table S4	14–16
10.	Secondary interactions of P1, L1, C1	& C2	
		Figures S16–S21	16–18

11. Parametric details of weak C-H····C) and C-H···Cl interactio	ns
	Table S5	18
12. EDX pattern of the flower shaped P	d ₁₆ S ₇ nanoparticles	
	Figures S22	19
13. EDX pattern of prismatic Pd ₁₇ Se ₁₅ n	nanoparticles	
	Figure S23	19
14. TEM image of NPs after 4 cycle		
	Figure S24	19
15. Proposed mechanism for Suzuki-M	iyaura and C–O coupling	reactions
	Figures S25–S26	20
16. Optimization of conditions for Suzu $Pd_{16}S_7 / Pd_{17}Se_{15} NPs^a$	ıki–Miyaura cross coupli	ng reaction catalyzed with
	Table S6	21
17. Optimization of conditions for C–C NPs ^{<i>a</i>}	coupling reaction cataly	zed with $Pd_{16}S_7 / Pd_{17}Se_{15}$
	Table S7	22
 Optimization of base, solvent and ti with C1/C2 	me for Suzuki–Miyaura	coupling reaction catalyzed
	Table S8	23
19. Optimization of base, solvent and ti	me for C–O coupling rea	ction catalyzed with C1/C2.
	Table S9	23
20. 'Catalyst Alive' Test for SMC of 4-	Bromobenzaldehyde, Ca	talyst 0.001 mol%.
	Figure S27	24
21. 'Catalyst Alive' Test for C-O Coup	oling of 1-Bromo-4-nitrol	enzene, Catalyst 0.1 mol%
	Figure S28	24
22. C-C and C-O coupled product NM	R spectra	
	Figures S29–S41	25–31

Figure S2. ¹³C{¹H} NMR of P1

Bruker Compass DataAnalysis 4.1

printed: 8/1/2016 10:58:12 AM

by: Sharma/Singh

Page 1 of 1

Figure S3. Mass Spectrum of P1

Figure S5. ¹³C{¹H} NMR of L1

Mass Spectrum SmartFormula Report

Bruker Compass DataAnalysis 4.1

printed: 6/27/2016 11:01:37 AM

:01:37 AM by: Sharma/Singh

Page 1 of 1

Figure S6. Mass Spectrum of L1

Figure S8. ¹³C{¹H} NMR of C1

Figure S10. ¹³C{¹H} NMR of L2

Figure S12. Mass Spectrum of L2

Figure S14. ¹³C{¹H} NMR of C2

Figure S15. ⁷⁷Se{¹H} NMR C2

Table S1.

Element	Weight %	Weight % σ	Atomic %
Carbon	32.602	4.281	69.1317
Nitrogen	2.3462	3.3178	4.0341
Oxygen	3.9223	1.4253	6.2331
Phosphorus	0.6396	0.1535	0.5284
Sulfur	8.6761	0.7095	7.0383
Chlorine	0.5959	0.1999	0.437
Palladium	51.2178	3.8891	12.5976

Elemental analyses of bulk sample of flower shaped $Pd_{16}S_7$ nanoparticles.

Table S2.Elemental analyses of bulk sample of prismatic Pd17Se15 nanoparticles

Element	Weight %	Weight % σ	Atomic %
Carbon	5.9232	3.5214	29.921
Nitrogen	0	0	0
Oxygen	1.1975	0.6882	4.6914
Phosphorus	0.0896	0.1092	0.1821
Chlorine	0.784	0.784	1.398
Selenium	43.5885	1.7622	34.9394
Palladium	48.4174	1.9563	28.8682

Table S3 Crystal Data and Structure Refinement Details for Precursor (P1), Ligands (L1, L2) and Complexes (C1, C2)

	P1	L1	C1	L2	C2
Empirical formula	C ₁₄ H ₁₂ BrNO	$C_{28}H_{24}N_2O_2S$	$C_{56}H_{48}Cl_2N_4O_4PdS_2,$	$C_{28}H_{24}N_2O_2Se$	$C_{56}H_{48}Cl_2N_4O_4PdSe_2$,
			2(CHCl ₃)		$2(C_2H_3N)$
Formula mass (g	290.15	452.55	1321.14	499.45	1258.31
mol ⁻¹)					
Temperature (K)	298(2)	298(2)	298(2)	298(2)	298(2)
Wavelenth, λ (A)	0.71073	0.71073	0.71073	0.71073	0.71073
Crystal system	Monoclinic	Monoclinic	Triclinic	Monoclinic	Triclinic
Crystal size (mm ³)	0.29 x 0.27 x 0.25	0.33 x 0.31 x 0.28	0.31 x 0.29 x 0.27	0.32 x 0.31 x 0.29	0.33 x 0.31 x 0.29
Space group	P 2 ₁ /n	C2	P -1	$P2_1/n$	P -1
<i>a</i> (Å)	9.398(3)	17.766(7)	11.700(4)	9.341(6)	9.430(2)
b(Å)	13.898(4)	5.557(2)	12.284(4)	20.608(13)	10.752(3)
<i>c</i> (Å)	10.247(3)	13.792(5)	12.639(4)	13.101(8)	14.940(4)
α (deg)	90	90	96.477(7)	90	81.965(4)
β (deg)	112.460(6)	120.633(8)	114.035(6)	109.33(1)	89.092(5)
γ (deg)	90	90	106.735(6)	90	68.046(4)
$V(Å^3)$	1236.9(6)	1171.5(8)	1532.8(9)	2380	1390.1(6)
Ζ	4	2	1	4	1
ρ_{calcd} (Mg m ⁻³)	1.558	1.283	1.431	1.394	1.503
Absorption	3.305	0.166	0.767	1.605	1.792
coefficient (mm ⁻¹)					
F(000)	584	476	672	1024	636
h, k, l ranges	–11→11	-20→20	-13→13	–11→11	-11→8
collected					
	-16→16	_6→6	_14→14	-24→24	-12→12
	-12→12	-16→16	–15→15	-15→15	–15→17
Reflection collected	11687	5687	14795	22425	5997
Independent	2175 [R(int) =	2058 [R(int) =	5395 [R(int) =	4166 [R(int) =	4899 [R(int) =
reflections	0.0625]	0.0717]	0.0452]	0.0618	0.02021
θ range (°)	2.50-25.00	2.66-24.95	2.05-25.00	1.92-25.00	2.31-25.00
Completeness to	99.9	99.7	99.4	99.6	98.9
θ_{\max} (%)					
Absorption		Sen	ni-empirical from equiva	alents	1
correction			· · · · · · · · · · · · · · ·		
Max., min.	0.432, 0.403	0.958, 0.946	0.810, 0.791	0.626, 0.602	0.598, 0.556
transmission	,	,	,	,	,
Refinement method		Fu	ll-matrix least-squares o	n F2	1
Data/restraints	2173 / 0 / 154	2058 / 1 / 150	5395 / 0 / 349	4166 / 0 / 298	4504 / 0 / 341
/parameters					
Goodness of fit on	1.024	1.082	1.108	1.010	1.023
F ²					
Final R indices $(I > I)$	R1 = 0.0468, wR2	R1 = 0.0804,	R1 = 0.0655,	R1 = 0.0416,	R1 = 0.0447,
$2\sigma(I)$	= 0.0965	wR2 = 0.1166	wR2 = 0.1624	wR2 = 0.0937	wR2 = 0.1382
<i>R</i> indices (all data)	R1 = 0.0879, wR2	R1 = 0.1168,	R1 = 0.0771,	R1 = 0.0723,	R1 = 0.0590,
	= 0.1100	wR2 = 0.1283	wR2 = 0.1689	wR2 = 0.1137	wR2 = 0.1651
Largest diff	0 545 / -0 465	0.292/_0.101	0.747/_0.711	0.316/_0.337	0.625 /_0.568
peak/hole (e Å -3)	0.545 / -0.405	0.272/-0.191	0./4//-0./11	0.510/-0.557	0.0257-0.508
Extinction					
coefficient					
coefficient					

Table S4

Selected bond	lengths [/	Δĺ	and	hond	angles	[0]
Sciette Dona	icinguns p		anu	Dona	angics	

Compounds	Bond length [Å]		Bond angle [°]		
P1	Br(1)-C(14)	1.941(4)	C(13)-N(1)-C(6)	121.2(3)	
	O(1)-C(13)	1.215(4)	C(13)-N(1)-C(7)	122.6(3)	
	N(1)-C(13)	1.377(5)	C(6)-N(1)-C(7)	116.1(3)	
	N(1)-C(6)	1.434(4)	C(12)-C(7)-C(8)	119.4(4)	
	N(1)-C(7)	1.443(4)	C(12)-C(7)-N(1)	119.4(3)	
	C(7)-C(12)	1.370(5)	C(8)-C(7)-N(1)	121.1(3)	
	C(7)-C(8)	1.372(5)	C(5)-C(6)-C(1)	119.9(4)	
	C(6)-C(5)	1.378(5)	C(5)-C(6)-N(1)	119.7(3)	
	C(6)-C(1)	1.379(5)	C(1)-C(6)-N(1)	120.3(3)	
	C(13)-C(14)	1.501(6)	O(1)-C(13)-N(1)	122.3(4)	
			O(1)-C(13)-C(14)	120.1(4)	
			N(1)-C(13)-C(14)	117.5(4)	
			C(13)-C(14)-Br(1)	107.8(3)	
L1	S(1)-C(14)	1.781(5)	C(14)-S(1)-C(14)#1	102.0(4)	
	S(1)-C(14)#1	1.781(5)	C(13)-N(1)-C(7)	121.7(4)	
	N(1)-C(13)	1.374(5)	C(13)-N(1)-C(2)	121.8(4)	
	N(1)-C(7)	1.438(5)	C(7)-N(1)-C(2)	116.3(4)	
	N(1)-C(2)	1.449(5)	O(1)-C(13)-N(1)	122.2(5)	
	C(13)-O(1)	1.220(5)	O(1)-C(13)-C(14)	122.8(4)	
	C(13)-C(14)	1.511(6)	N(1)-C(13)-C(14)	114.9(4)	
			C(8)-C(7)-N(1)	119.6(4)	
			C(12)-C(7)-N(1)	121.2(4)	
			C(13)-C(14)-S(1)	115.5(3)	
			C(1)-C(2)-N(1)	120.9(5)	
	$S_{2}(1) C(14)$	1.050(2)	C(3)-C(2)-N(1)	$\frac{118.0(3)}{0(.00(15))}$	
L2	Se(1)-C(14) Se(1)-C(15)	1.950(3)	C(14)-Se(1)-C(15) O(1) C(12) N(1)	90.99(15)	
	C(12) O(1)	1.939(4) 1.222(4)	O(1)-C(13)-N(1) O(1)-C(13)-C(14)	122.0(3) 120.2(2)	
	C(13)-O(1) C(13) N(1)	1.222(4) 1.372(4)	N(1) C(13) C(14)	120.3(3) 117.7(3)	
	C(13)-N(1) C(13)-C(14)	1.572(4) 1.502(4)	$\Gamma(1) - C(13) - C(14)$ C(16) - N(2) - C(17)	117.7(3) 121.6(3)	
	N(2) - C(16)	1.302(4) 1.375(4)	C(10) - N(2) - C(17) C(16) - N(2) - C(23)	121.0(3) 121.3(3)	
	N(2)-C(10)	1.373(4) 1 440(4)	C(10)-N(2)-C(23)	121.3(3) 117 1(3)	
	N(2)-C(23)	1.446(4)	C(24)-C(23)-N(2)	1213(3)	
	N(1)-C(6)	1.440(4)	C(24) C(23) N(2) C(28) C(23) N(2)	121.5(3) 118 9(3)	
	N(1) - C(7)	1.443(4)	C(13)-N(1)-C(6)	120.3(3)	
	C(16)-O(2)	1217(4)	C(13)-N(1)-C(7)	123.5(3)	
		1.21/(1)	C(6)-N(1)-C(7)	1161(2)	
			C(8)-C(7)-N(1)	1210(3)	
			C(12)-C(7)-N(1)	119 5(3)	
			C(5)-C(6)-N(1)	119.0(3)	
			C(1)-C(6)-N(1)	121.4(3)	
			O(2)-C(16)-N(2)	121.5(3)	
			O(2)-C(16)-C(15)	120.8(3)	
			N(2)-C(16)-C(15)	117.7(3)	
			C(18)-C(17)-N(2)	119.1(3)	
			C(22)-C(17)-N(2)	121.5(3)	
			C(16)-C(15)-Se(1)	109.9(2)	
			C(13)-C(14)-Se(1)	109.7(2)	
C1	Pd(1)-Cl(1)#1	2.2892(15)	Cl(1)#1-Pd(1)-Cl(1)	180.000(1)	
~ -	Pd(1)-Cl(1)	2.2892(15)	Cl(1)#1-Pd(1)-S(1)	94.79(5)	

	Pd(1)-S(1)	2 3235(14)	C1(1)-Pd(1)-S(1)	85 21(5)
	Pd(1)-S(1)#1	2.3235(14)	$C_1(1) \#_1 Pd(1) - S(1) \#_1$	85 21(5)
	S(1)-C(14)	1.819(5)	$Cl(1)_Pd(1)_S(1)\#1$	94.79(5)
	S(1) - C(15)	1.019(5) 1.830(5)	S(1)-Pd(1)-S(1)#1	180.00(6)
	O(2)-C(16)	1 218(6)	C(14)-S(1)-C(15)	98 4(2)
	N(2)-C(16)	1.216(0)	C(14)-S(1)-C(15)	110.4(2)
	N(2)-C(10) N(2)-C(23)	1.303(0) 1.438(6)	C(14)-S(1)-Pd(1)	$104\ 24(18)$
	N(2)-C(17)	1.430(0) 1.430(7)	C(15)-S(1)-Tu(1) C(16)-N(2)-C(23)	104.24(10) 123.6(4)
	O(1) - C(13)	1.437(7) 1.213(6)	C(16)-N(2)-C(17)	123.0(4) 118 0(4)
	N(1)-C(13)	1.213(0) 1 359(7)	C(10)-N(2)-C(17)	1173(4)
	N(1)-C(13)	1.337(7) 1 441(7)	C(23)-N(2)-C(17) C(13)-N(1)-C(6)	117.5(4) 122 6(4)
	N(1) - C(0) N(1) - C(7)	1.441(7) 1.442(6)	C(13) - N(1) - C(0) C(13) - N(1) - C(7)	122.0(4) 121 $4(4)$
	$\Pi(1) - C(7)$	1.443(0)	C(13)=N(1)=C(7)	121.4(4) 115 0(4)
			C(16)-C(15)-S(1)	107.7(4)
			O(2) C(16) N(2)	107.7(4) 122 1(5)
			O(2) - O(10) - N(2) O(2) - O(16) - O(15)	123.1(3) 120.6(4)
			N(2) = C(16) = C(15)	120.0(4) 116.2(4)
			$\Gamma(2)$ -C(10)-C(13) C(5) C(6) N(1)	110.2(4) 110.0(5)
			C(3)-C(0)-N(1) C(1) C(6) N(1)	119.0(3) 120.6(5)
			C(1)-C(0)-N(1) C(28) C(23) N(2)	120.0(3) 118 7(5)
			C(28)-C(23)-IN(2) C(24)-C(23)-IN(2)	110.7(3) 120.4(5)
			C(24)-C(23)-IN(2) C(13)-C(14)-S(1)	120.4(3) 108 6(4)
			C(13)-C(14)-S(1) C(12)-C(7)-N(1)	100.0(4) 110.0(5)
			C(12)-C(7)-IN(1) C(8) C(7) N(1)	119.0(3) 120.6(5)
			O(1) C(13) N(1)	120.0(3) 124.3(5)
			O(1) - C(13) - N(1) O(1) - C(13) - C(14)	124.5(5) 121.5(5)
			N(1)-C(13)-C(14)	121.3(5) 114.2(5)
			N(1) - C(13) - C(14)	114.2(3)
			$((22)_{(17)_{N(2)}}$	120//(5)
			C(22)-C(17)-N(2) C(18)-C(17)-N(2)	120.7(5)
<u></u>	C(6)-N(1)	1 438(7)	$\begin{array}{c} C(22)-C(17)-N(2) \\ C(18)-C(17)-N(2) \\ \end{array}$	$\frac{120.7(5)}{119.9(5)}$
C2	C(6)-N(1) C(7)-N(1)	1.438(7) 1.420(7)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1)	$ \begin{array}{r} 120.7(5) \\ \underline{119.9(5)} \\ 121.2(5) \\ 117.2(5) \end{array} $
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1)	1.438(7) 1.420(7) 1.234(6)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1) C(12)-C(7)-N(1)	120.7(5) 119.9(5) 121.2(5) 117.2(5) 119.2(5)
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1)	1.438(7) 1.420(7) 1.234(6) 1.361(7)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1) C(12)-C(7)-N(1) C(8)-C(7)-N(1)	$\begin{array}{r} 120.7(5) \\ \underline{119.9(5)} \\ 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 120.8(5) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1)	1.438(7) 1.420(7) 1.234(6) 1.361(7) 1.955(5)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1) C(12)-C(7)-N(1) C(8)-C(7)-N(1) O(1)-C(13)-N(1)	$\begin{array}{r} 120.7(5) \\ \underline{119.9(5)} \\ 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 120.8(5) \\ 122.6(5) \\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1)	1.438(7) 1.420(7) 1.234(6) 1.361(7) 1.955(5) 1.974(5)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1) C(12)-C(7)-N(1) C(8)-C(7)-N(1) O(1)-C(13)-N(1) O(1)-C(13)-C(14)	$\begin{array}{r} 120.7(5) \\ \underline{119.9(5)} \\ 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 120.8(5) \\ 122.6(5) \\ 119.0(5) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2)	1.438(7) 1.420(7) 1.234(6) 1.361(7) 1.955(5) 1.974(5) 1.222(6)	C(22)-C(17)-N(2) C(18)-C(17)-N(2) C(1)-C(6)-N(1) C(5)-C(6)-N(1) C(12)-C(7)-N(1) C(8)-C(7)-N(1) O(1)-C(13)-N(1) O(1)-C(13)-C(14) N(1)-C(13)-C(14)	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2)	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(17)-N(2)	1.438(7) 1.420(7) 1.234(6) 1.361(7) 1.955(5) 1.974(5) 1.222(6) 1.363(7) 1.408(7)	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline \end{array}$	$\begin{array}{c} 120.7(5) \\ 119.9(5) \\ \hline 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 120.8(5) \\ 122.6(5) \\ 119.0(5) \\ 118.4(5) \\ 106.5(3) \\ 107.4(3) \\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(17)-N(2) C(23)-N(2)	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.449(7) \end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \end{array}$	$\begin{array}{c} 120.7(5) \\ 119.9(5) \\ \hline 121.2(5) \\ 117.2(5) \\ 120.8(5) \\ 122.6(5) \\ 122.6(5) \\ 119.0(5) \\ 118.4(5) \\ 106.5(3) \\ 107.4(3) \\ 120.4(5) \\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(17)-N(2) C(23)-N(2) C(29)-N(3)	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.449(7) \\ 1.086(11) \end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \end{array}$	$\begin{array}{c} 120.7(5) \\ 119.9(5) \\ \hline 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 120.8(5) \\ 122.6(5) \\ 119.0(5) \\ 118.4(5) \\ 106.5(3) \\ 107.4(3) \\ 120.4(5) \\ 122.3(5) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(17)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1)	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.449(7) \\ 1.086(11) \\ 2.2736(16) \end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline \end{array}$	$\begin{array}{c} 120.7(5) \\ 119.9(5) \\ \hline 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 122.6(5) \\ 122.6(5) \\ 119.0(5) \\ 118.4(5) \\ 106.5(3) \\ 107.4(3) \\ 120.4(5) \\ 122.3(5) \\ 117.3(4) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.408(7) \\ 1.449(7) \\ 1.086(11) \\ 2.2736(16) \\ 2.2736(16) \end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline \end{array}$	$\begin{array}{c} 120.7(5) \\ 119.9(5) \\ \hline 121.2(5) \\ 117.2(5) \\ 119.2(5) \\ 122.6(5) \\ 122.6(5) \\ 119.0(5) \\ 118.4(5) \\ 106.5(3) \\ 107.4(3) \\ 120.4(5) \\ 122.3(5) \\ 117.3(4) \\ 121.0(5) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1)	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.449(7) \\ 1.086(11) \\ 2.2736(16) \\ 2.2736(16) \\ 2.4151(7) \end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \end{array}$	$\begin{array}{r} 120.7(5)\\ \underline{119.9(5)}\\ 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7) \\ 1.420(7) \\ 1.234(6) \\ 1.361(7) \\ 1.955(5) \\ 1.974(5) \\ 1.222(6) \\ 1.363(7) \\ 1.408(7) \\ 1.449(7) \\ 1.086(11) \\ 2.2736(16) \\ 2.2736(16) \\ 2.4151(7) \\ 2.4151(7) \end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$ $107.4(3)$ $120.4(5)$ $122.3(5)$ $117.3(4)$ $121.0(5)$ $120.2(5)$ $119.4(5)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.449(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(8)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \hline C(28)-C(23)-N(2)\\ \hline \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$ $107.4(3)$ $120.4(5)$ $122.3(5)$ $117.3(4)$ $121.0(5)$ $120.2(5)$ $119.4(5)$ $119.9(5)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \hline C(28)-C(23)-N(2)\\ \hline N(3)-C(29)-C(30)\\ \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$ $107.4(3)$ $120.4(5)$ $122.3(5)$ $117.3(4)$ $121.0(5)$ $120.2(5)$ $119.4(5)$ $119.9(5)$ $175.3(14)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(17) - N(2) \\ \hline N(2) - C(17) - C(22) \\ \hline C(24) - C(23) - N(2) \\ \hline C(28) - C(23) - N(2) \\ \hline N(3) - C(29) - C(30) \\ \hline C(13) - N(1) - C(7) \\ \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $120.8(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$ $107.4(3)$ $120.4(5)$ $122.3(5)$ $117.3(4)$ $121.0(5)$ $120.2(5)$ $119.4(5)$ $119.9(5)$ $175.3(14)$ $124.1(4)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(17)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline O(1) - C(13) - C(14) \\ \hline O(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(13) - N(1) \\ \hline C(28) - C(23) - N(2) \\ \hline N(3) - C(29) - C(30) \\ \hline C(13) - N(1) - C(6) \\ \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ \hline 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(17) - N(2) \\ \hline C(28) - C(23) - N(2) \\ \hline C(28) - C(23) - N(2) \\ \hline C(28) - C(29) - C(30) \\ \hline C(13) - N(1) - C(6) \\ \hline C(7) - N(1) - C(6) \\ \hline \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.449(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(17) - N(2) \\ \hline N(2) - C(17) - C(22) \\ \hline C(28) - C(23) - N(2) \\ \hline N(3) - C(29) - C(30) \\ \hline C(13) - N(1) - C(6) \\ \hline C(7) - N(1) - C(6) \\ \hline C(16) - N(2) - C(17) \\ \hline \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ 120.5(4)\\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(17) - C(22) \\ \hline C(28) - C(23) - N(2) \\ \hline C(28) - C(23) - N(2) \\ \hline C(13) - N(1) - C(7) \\ \hline C(13) - N(1) - C(6) \\ \hline C(16) - N(2) - C(17) \\ \hline C(16) - N(2) - C(23) \\ \hline \end{array}$	120.7(5) $119.9(5)$ $121.2(5)$ $117.2(5)$ $119.2(5)$ $122.6(5)$ $119.0(5)$ $118.4(5)$ $106.5(3)$ $107.4(3)$ $120.4(5)$ $122.3(5)$ $117.3(4)$ $121.0(5)$ $120.2(5)$ $119.4(5)$ $119.9(5)$ $175.3(14)$ $124.1(4)$ $118.5(5)$ $117.4(4)$ $120.5(4)$ $122.2(4)$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(17)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22) - C(17) - N(2) \\ \hline C(18) - C(17) - N(2) \\ \hline C(1) - C(6) - N(1) \\ \hline C(5) - C(6) - N(1) \\ \hline C(12) - C(7) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - N(1) \\ \hline O(1) - C(13) - C(14) \\ \hline N(1) - C(13) - C(14) \\ \hline C(13) - C(14) - Se(1) \\ \hline C(16) - C(15) - Se(1) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - N(2) \\ \hline O(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline N(2) - C(16) - C(15) \\ \hline C(18) - C(17) - N(2) \\ \hline N(2) - C(17) - N(2) \\ \hline N(2) - C(17) - C(22) \\ \hline C(24) - C(23) - N(2) \\ \hline C(13) - N(1) - C(7) \\ \hline C(13) - N(1) - C(6) \\ \hline C(16) - N(2) - C(17) \\ \hline C(16) - N(2) - C(23) \\ \hline C(17) - N(2) - C(23) \\ \hline C(17) - N(2) - C(23) \\ \hline \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ 120.5(4)\\ 122.2(4)\\ 117.0(4) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(16)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \hline C(28)-C(23)-N(2)\\ \hline C(13)-N(1)-C(6)\\ \hline C(16)-N(2)-C(17)\\ \hline C(16)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(11)-Pd(1)-Cl(1)\#1 \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ \hline 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ 120.5(4)\\ 122.2(4)\\ 117.0(4)\\ 180.00(3)\\ \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.449(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \hline C(28)-C(23)-N(2)\\ \hline C(13)-N(1)-C(6)\\ \hline C(16)-N(2)-C(17)\\ \hline C(16)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(11)-Pd(1)-Cl(1)\#1\\ \hline Cl(1)-Pd(1)-Se(1)\\ \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ \hline 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ 120.5(4)\\ 122.2(4)\\ 117.0(4)\\ 180.00(3)\\ 87.18(4) \end{array}$
C2	C(6)-N(1) C(7)-N(1) C(13)-O(1) C(13)-N(1) C(14)-Se(1) C(15)-Se(1) C(16)-O(2) C(16)-N(2) C(23)-N(2) C(23)-N(2) C(29)-N(3) Cl(1)-Pd(1) Pd(1)-Cl(1)#1 Pd(1)-Se(1) Pd(1)-Se(1)#1	$\begin{array}{c} 1.438(7)\\ 1.420(7)\\ 1.234(6)\\ 1.361(7)\\ 1.955(5)\\ 1.974(5)\\ 1.222(6)\\ 1.363(7)\\ 1.408(7)\\ 1.408(7)\\ 1.086(11)\\ 2.2736(16)\\ 2.2736(16)\\ 2.4151(7)\\ 2.4151(7)\end{array}$	$\begin{array}{c} C(22)-C(17)-N(2)\\ \hline C(18)-C(17)-N(2)\\ \hline C(1)-C(6)-N(1)\\ \hline C(5)-C(6)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline C(12)-C(7)-N(1)\\ \hline O(1)-C(13)-N(1)\\ \hline O(1)-C(13)-C(14)\\ \hline N(1)-C(13)-C(14)\\ \hline C(13)-C(14)-Se(1)\\ \hline C(16)-C(15)-Se(1)\\ \hline O(2)-C(16)-N(2)\\ \hline O(2)-C(16)-C(15)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(16)-C(15)\\ \hline C(18)-C(17)-N(2)\\ \hline N(2)-C(17)-C(22)\\ \hline C(24)-C(23)-N(2)\\ \hline C(28)-C(23)-N(2)\\ \hline C(13)-N(1)-C(7)\\ \hline C(13)-N(1)-C(6)\\ \hline C(7)-N(1)-C(6)\\ \hline C(16)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(17)-N(2)-C(23)\\ \hline C(11)-Pd(1)-Cl(1)\#1\\ \hline Cl(1)-Pd(1)-Se(1)\\ \hline Cl(1)\#1-Pd(1)-Se(1)\\ \hline \end{array}$	$\begin{array}{c} 120.7(5)\\ \underline{119.9(5)}\\ \hline 121.2(5)\\ 117.2(5)\\ 119.2(5)\\ 120.8(5)\\ 122.6(5)\\ 122.6(5)\\ 119.0(5)\\ 118.4(5)\\ 106.5(3)\\ 107.4(3)\\ 120.4(5)\\ 122.3(5)\\ 117.3(4)\\ 121.0(5)\\ 120.2(5)\\ 119.4(5)\\ 119.9(5)\\ 175.3(14)\\ 124.1(4)\\ 118.5(5)\\ 117.4(4)\\ 120.5(4)\\ 122.2(4)\\ 117.0(4)\\ 180.00(3)\\ 87.18(4)\\ 92.82(4)\\ \end{array}$

Cl(1)#1-Pd(1)-Se(1)#1	87.18(4)
Se(1)-Pd(1)-Se(1)#1	180.0
C(14)-Se(1)-C(15)	97.6(2)
C(14)-Se(1)-Pd(1)	103.57(15)
C(15)-Se(1)-Pd(1)	107.27(16)

Secondary interactions:

The intermolecular C–H···O interactions present in the crystal of **P1**, resulting supramolecular structure are shown in Fig. S16. The strong intermolecular H-bonding between O–H is present in **L2**. The centrosymmetric dimeric units that are formed *via* reciprocatory C(5)–H(5)···O2 and C(8)–H(8)···O1 H-bonding interactions, self-assemble, in the crystal lattice of **L2** as shown in Fig. S17.¹

Figure S16. Supramolecular structure due to C-H…O interactions in the crystal lattice of P1.

Figure S17. C–H···O interactions in the crystal lattice of L2.

In C1, intermolecular C(24)–H(24)···O2 and C(12)–H(12)···O1 H-bonding interactions result in supramolecular structure (Figs. S18 and S19). In C2, centrosymmetric dimeric units are formed by intermolecular C(12)–H(12)···O2 interactions in conjunction with intramolecular C(15)–H(15A)···O1, C14–H14A···Cl1 and C15–H15B···Cl1 H-bonding as shown in Fig. S20. The presence of intermolecular C(8)–H(8)···O1 interaction and intramolecular H-bonding (C(15)–H(15A)···O1), results in supramolecular structure of C2 as shown in Figs. S20 and S21.

Figure S18. Supramolecular structure due to intermolecular C-H···O interactions in C1.

Figure S19. Supramolecular structure due to intermolecular C–H…O interactions in the crystal of C1.

Figure S20. C–H···O and C–H···Cl interactions in the crystal lattice of C2.

Figure S21. C–H···O interactions in the crystal of C2.

Table S5.

Parametric details of D–H…A interactions.

	D–H···A	d(D–H) (Å)	$d(H \cdots A)(Å)$	$d(D \cdots A)$ (Å)	<(DHA) (°)	Symmetry operation
P1	C(14)-H(14A)…O1	0.97	2.411	3.361(5)	166.2	2-x, -y, 2-z
	C(4)–H(4)…O1	0.93	2.666	3.340(6)	129.9	-1/2+x,1/2-y,-1/2+z
C1	C(24)-H(24)···O2	0.93	2.617	3.450(9)	149.3	x, -1+y, z
	С(12)-Н(12)…О1	0.93	2.711	3.340(8)	125.7	1+x, y, 1+z
L2	C(5)–H(5)····O2	0.93	2.578	3.257(5)	130.3	-x,-y,1-z
	C(8)–H(8)…O1	0.93	2.609	3.430(4)	147.6	-x,-y,1-z
C2	C(14)–H(14A)····Cl(1)	0.97	2.734	3.372(6)	123.8	-x,1-y,1-z
	C(15)-H(15B)…Cl(1A)	0.97	2.871	3.244(5)	103.9	-x,1-y,1-z
	C(15)-H(15A)····O(1)	0.97	2.616	3.285(6)	126.3	-x, 1-y, 1-z
	C(12)-H(12)···O(2)	0.93	2.508	3.436(9)	175.5	-x, 1-y, 1-z

Figure S22. EDX pattern of the prismatic Pd₁₆S₇ nanoparticles.

Figure S23. EDX pattern of the prismatic $Pd_{17}Se_{15}$ nanoparticles.

Figure S24. TEM Images of (a) $Pd_{16}S_7$ NPs (Scale Bar 100 nm). (b) $Pd_{17}Se_{15}$ NPs (Scale Bar 100 nm) after 4 Run Cycle .

Proposed mechanism for Suzuki-Miyaura coupling

The mechanism for Suzuki–Miyaura coupling reaction, where $Pd_{16}S_7$ and $Pd_{17}Se_{15}$ NPs are catalytic species is shown in Fig. S25. It based on earlier proposed pathway.²

Figure S25. Mechanism for Suzuki–Miyaura coupling reactions.

Proposed Mechanism for C–O coupling

The mechanism for C–O coupling reaction catalyzed with $Pd_{16}S_7 / Pd_{17}Se_{15}$ NPs is proposed on the basis of earlier reports³ and is shown in Fig. S26. It is based on Pd(0).

Figure S26. Mechanism for C–O coupling reactions.

R	$Br + (HO)_2B$	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅ K ₂ CO ₃ , DMF/H	$\sum_{i=0}^{NPs} R$		
S. No.	Catalyst ^a	Solvent	Base	Time	Conversio
1.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF (4 mL)	K ₂ CO ₃	(h) 12	<u>n (%)</u> 81/75
2.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF (4 mL)	Cs ₂ CO ₃	12	55/58
3.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	Toluene (4 mL)	CH ₃ ONa	12	44/45
4.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	EtOH (4 mL)	K ₂ CO ₃	12	38/40
5.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	H ₂ O (4 mL)	K ₂ CO ₃	12	12/< 10
6.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF:H ₂ O (3:1 mL)	Cs ₂ CO ₃	12	68/70
7.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF:H ₂ O (3:1 mL)	K ₂ CO ₃	12	100/100
8.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF:H ₂ O (3:1 mL)	K ₂ CO ₃	6	100/100
9.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF:H ₂ O (3:1 mL)	K ₂ CO ₃	3	90/96
10.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF:H ₂ O (3:1 mL)	K ₂ CO ₃	1	61/68
11.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅ *	DMF:H ₂ O (3:1 mL)	K ₂ CO ₃	1	65/72
12.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	EtOH:H ₂ O (3:1 mL)	K ₂ CO ₃	12	42/50

 $\label{eq:solution} \begin{array}{l} \textbf{Table S6}. \ Optimization of conditions for Suzuki-Miyaura cross coupling reaction catalyzed with \\ Pd_{16}S_7/Pd_{17}Se_{15}\,NPs^a \end{array}$

^{*a*}Reaction conditions: 4-bromobenzaldehyde (1.0 mmol), phenylboronic acid (1.5 mmol), base (2.0 mmol), $Pd_{16}S_7 / Pd_{17}Se_{15}$ nanoparticles: 0.5 mol % of Pd, temp. 100 °C. Conversion: ¹H NMR based. * $Pd_{16}S_7 / Pd_{17}Se_{15}$ NPs equivalent to 1.0 mol % of Pd.

R	Br + HO	$\frac{Pd_{16}S_7/1}{K_2CO}$	$\frac{Pd_{17}Se_{15}NPs}{\searrow}$		
S. No.	Catalyst ^a	Solvent	Base	Time (h)	Conversion (%)
1.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMF (4 mL)	K ₂ CO ₃	12	42/45
2.	$Pd_{16}S_{7}/Pd_{17}Se_{15}$	DMF(4 mL)	Cs_2CO_3	12	24/30
3.	$Pd_{16}S_{7}/Pd_{17}Se_{15}$	DMF (4 mL)	NaO ^t Bu	12	19/25
4.	$Pd_{16}S_{7}/Pd_{17}Se_{15}$	DMSO (4 mL)	K ₂ CO ₃	12	85/88
5.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMSO (4 mL)	Cs_2CO_3	12	59/65
6.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMSO (4 mL)	K ₂ CO ₃	6	82/85
7.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMSO (4 mL)	K ₂ CO ₃	3	80/85
8.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	DMSO (4 mL)	K ₂ CO ₃	1	55/58
9.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	ETOH (4 mL)	K ₂ CO ₃	12	29/35
10.	Pd ₁₆ S ₇ / Pd ₁₇ Se ₁₅	ETOH (4 mL)	Cs ₂ CO ₃	12	22/30

Table S7. Optimization of Conditions for C–O Coupling Reaction Catalyzed with $Pd_{16}S_7/Pd_{17}Se_{15}NPs^a$

^{*a*}Reaction conditions: 4-bromobenzaldehyde (1.0 mmol), phenol (1.1 mmol), base (2.0 mmol), Pd₁₆S₇/Pd₁₇Se₁₅ NPs: 0.5 mol % of Pd, temp. 100 °C. Conversion: ¹H NMR based.

S. No.	Catalyst ^a	Solvent	Base	Time (h)	Conversion (%)			
1.	C1/C2	DMF (4 mL)	K ₂ CO ₃	12	79/72			
2.	C1/C2	DMF (4 mL)	Cs_2CO_3	12	61/58			
3.	C1/C2	Toluene (4 mL)	CH ₃ ONa	12	48/46			
4.	C1/C2	EtOH (4 mL)	K ₂ CO ₃	12	35/37			
5.	C1/C2	H ₂ O (4 mL)	K ₂ CO ₃	12	28/21			
6.	C1/C2	EtOH : H ₂ O (3 : 1 mL)	K_2CO_3	12	45/39			
7.	C1/C2	DMF : H ₂ O (3 : 1 mL)	Cs_2CO_3	12	73/72			
8.	C1/C2	DMF : H ₂ O (3 : 1 mL)	K ₂ CO ₃	12	100/100			
9.	C1/C2	DMF : H ₂ O (3 : 1 mL)	K ₂ CO ₃	3	100/100			
10.	C1/C2	DMF : H ₂ O (3 : 1 mL)	K ₂ CO ₃	2	100/97			
^{<i>a</i>} Reaction conditions: 4-bromobenzaldehyde (1.0 mmol), phenylboronic acid (1.5 mmol), base (2.0 mmol), C1 / C2 (0.01 mol %), temp. 100 °C, Conversion: ¹ H NMR based.								

Table S8. Optimization of base, solvent and time for Suzuki–Miyaura coupling reaction catalyzed with C1/C2.

Table S9. Optimization of base, solvent and time for C–O coupling reaction catalyzed with C1/C2.

S. No.	Catalyst ^a	Solvent	Base	Time (h)	Conversion (%)
1.	C1/C2	DMF (4 mL)	K ₂ CO ₃	12	44/39
2.	C1/C2	DMF(4 mL)	Cs ₂ CO ₃	12	32/21
3.	C1/C2	DMF (4 mL)	NaO ^t Bu	12	24/19
4.	C1/C2	DMSO (4 mL)	K ₂ CO ₃	12	98/79
5.	C1/C2	DMSO (4 mL)	Cs ₂ CO ₃	12	62/55
6.	C1/C2	DMSO (4 mL)	K ₂ CO ₃	6	95/75
7.	C1/C2	DMSO (4 mL)	K ₂ CO ₃	3	95/72
8.	C1/C2	DMSO (4 mL)	K ₂ CO ₃	1	80/59
9.	C1/C2	ETOH (4 mL)	K ₂ CO ₃	12	31/26
10.	C1/C2	ETOH (4 mL)	Cs ₂ CO ₃	12	29/28

^{*a*}Reaction conditions: 4-bromobenzaldehyde (1.0 mmol), phenol (1.1 mmol), base (2.0 mmol), C1 0.1 mol %, temp. 100 °C. Conversion: ¹H NMR based.

Figure S27. 'Catalyst Alive' Test for SMC of 4-Bromobenzaldehyde, Catalyst 0.001 mol%.

Figure S28. 'Catalyst Alive' Test for C–O Coupling of 1-Bromo-4-nitrobenzene, Catalyst 0.1 mol%.

Figure S30. ¹H NMR of 4–Nitrobiphenyl

Figure S32. ¹H NMR of 4–Phenylbenzonitrile

Figure S34. ¹H NMR of 4–Acetylbiphenyl

Figure S36. ¹H NMR of 4-phenoxybenzaldehyde

Figure S38. ¹H NMR of 1–Methyl-4-phenoxybenzene

Figure S40. ¹H NMR of 1– (4-phenoxyphenyl)ethanone

Figure S41. ¹H NMR of Diphenyl ether

References

- (a) P. Singh, A. K. S. Chauhan, R. J. Butcher and A. Duthie, *J. Organomet. Chem.*, 2013, 728, 44. (b) P. Singh, A. K. S. Chauhan, R. J. Butcher and A. Duthie, *J. Organomet. Chem.*, 2013, 731, 49. (c) A. K. S. Chauhan, P. Singh, R. C. Srivastava, R. J. Butcher and A. Duthie, *J. Organomet. Chem.*, 2011, 696, 3649. (d) A. K. S. Chauhan, P. Singh, R. C. Srivastava, R. J. Butcher and A. Duthie, *J. Organomet. Chem.*, 2010, 695, 2532.
- (a) M. Perez-Lorenzo, J. Phys. Chem. Lett., 2012, 3, 167. (b) B. Cornelio, A. R. Saunders, W. A. Solomonsz, M. Laronze-Cochard, A. Fontana, J. Sapi, A. N. Khlobystovcd and G. A. Rance, J. Mater. Chem. A, 2015, 3, 3918. (c) P. Purohit, K. Seth, A. Kumar and A. K. Chakraborti, ACS Catal., 2017, 7, 2452.
- (a) A. Aranyos, D. W. Old, A. Kiyomori, J. P. Wolfe, J. P. Sadighi and S. L. Buchwald, J. Am. Chem. Soc., 1999, 121, 4369.
 (b) K. E. Torraca, X. Huang, C. A. Parrish and S. L.

Buchwald, J. Am. Chem. Soc., 2001, 123, 10770. (c) S. Gowrisankar, A. G. Sergeev, P. Anbarasan, A. Spannenberg, H. Neumann and M. Beller, J. Am. Chem. Soc., 2010, 132, 11592. (d) G. L Tolnai, B. Pethő, P. Králl and Z. Novák, Adv. Synth. Catal., 2014, 356, 125. (e) T. M. Rangarajan, R. Singh, R. Brahma, K. Devi, R. P. Singh, R. P. Singh and A. K. Prasad, Chem. Eur. J., 2014, 20, 14218.

- 4. B. Tao, D. W. Boykin, J. Org. Chem., **2004**, *69*, 4330–4335.
- 5. R. K. Arvela, N. E. Leadbeater, Org. Lett., 2005, 7, 2101–2104.
- T. Hu, T. Schulz, C. Torborg, X. Chen, J. Wang, M. Beller, J. Huang, Chem. Commun., 2009, 7330–7332.
- 7. Q. Zhang, D. Wang, X. Wang, K. Ding, J. Org .Chem., 2009, 74, 7187–7190.