A fluorescence 'turn-on' chemodosimeter for specific detection of Pd²⁺ by

rhodamine appended Schiff base and its application in live cell imaging

Anup Kumar Bhanja, Snehasis Mishra, Krishna Das Saha and Chittaranjan Sinha*

Fig. S1. 1H-NMR of 2-allyloxy-5-nitrobenzaldehyde (A).

Fig. S2. 1H-NMR of N-(Rhodamine-6G)lactam-ethylenediamine (B).

Fig. S3. FT-IR spectrum of RD in KBr disc

Fig. S4. ¹HNMR spectrum of RD in CDCl₃

Fig. S5. ¹³CNMR spectrum of RD in CDCl₃

Fig. S6. Mass spectrum of RD

Fig S7. The Job's plot shows 1 : 1 stoichiometry between [Pd²⁺] and [RD]

Fig. S8. Fluorescence intensity changes profiles of 100 μ M RD in CH₃CN–water (HEPES buffer, pH =7.4; v/v, 1/4) in presence of selected metal ions at excitation wavelength 485 nm.

Fig. S9. The linear dynamic response of H_2L for Zn^{2+} and the determination of the detection limit (LOD) for Zn^{2+}

Fig. S10. Mass spectrum of Complex.

Fig. S11. FT-IR spectrum of Complex in KBr disc

Fig. 12a. UV-Vis absorption spectra of RD' and RD' in presence of Pd^{2+} .

Fig. 12b. Fluorescence spectra of RD' and RD' in presence of Pd^{2+} .

Fig. S13. Partial ¹H-NMR spectra (300 MHz, CDCl₃) of RD and RD With 1 equiv. of Pd²⁺

Scheme S1. Structure of RD[/] and [Pd-RD[/]]

Fig. S14a. ¹H NMR spectrum of RD-Pd²⁺ Complex in CDCl₃

Fig. S14b. ¹³C NMR spectrum of RD-Pd²⁺ Complex in CD₃CN-CDCl₃·

Fig. S15. Effect of pH on the fluorescence activity of RD and RD with Pd^{2+} in (CH₃CN/H₂0, $^{1}/_{4}$, v/v, HEPES buffer).

Fig. S16. Optimized structures of RD and RD-Pd²⁺ complex of Rd.

Fig S17: Frontier molecular orbitals of RD

Fig S18: Frontier molecular orbitals of Palladium Complex

Bond Dis	tance (Å)	Bond ang	gle (°)
C(18)-N(31)	1.493	C(30)-N(31)-C(35)	121.92
C(30)-N(31)	1.375		
C(30)-O(29)	1.221	C(18)-N(31)-C(35)	123.57
N(31)-C(35)	1.406		
C(38)-N(40)	1.269	C(41)-C(38)-N(40)	121.90
N(40)-C(32)	1.450		
O(76)-C(85)	1.425	C(42)-O(76)-C(85)	119.66
C(42)-O(76)	1.355		

Table S1: Bond parameters of RD

Bond Distance (Å)		Bond angle (°)	
Pd-O(29)	2.316	O(29)-Pd-O(67)	119.47
Pd-O(67)	2.027	Pd-O(29)-C(30)	85.68
Pd-N(56)	1.952	N(56)-Pd-N(57)	84.92
Pd-N(57)	1.965	Pd-N(56)-C(30)	101.79

 Table S2: Bond parameters of Palladium complex

C(30)-O(29)	1.326	O(29)-C(30)- N(56)	111.16
N(56)-C(30)	1.335	O(67)-Pd- N(57)	94.45
N(56)-C(71)	1.462	Pd-N(56)-C(71)	115.33
C(68)-C(71)	1.551		
N(57)-C(68)	1.503	Pd-N(57)-C(78)	125.58
C(78)-N(57)	1.303		
C(60)-O(67)	1.320	Pd-O(67)-C(60)	123.94

 Table S3. Composition and energy of MOs Palladium Complex.

Orbital	Energy(eV)	Composition	
		Metal	Ligand
LUMO+10	0.22	32	68
LUMO+9	-0.18	30	70
LUMO+8	-0.31	54	46
LUMO+7	-0.38	7	93
LUMO+6	-0.54	2	98
LUMO+5	-0.96	0	100
LUMO+4	-1.5	7	93
LUMO+3	-2.18	52	48
LUMO+2	-2.36	1	99
LUMO+1	-2.4	4	96
LUMO	-2.74	1	99
НОМО	-5.09	0	100
HOMO-1	-6.11	0	100
НОМО-2	-6.15	21	79
НОМО-3	-6.36	0	100
НОМО-4	-6.61	1	99
НОМО-5	-6.69	20	80
НОМО-6	-6.9	60	40
HOMO-7	-7.09	50	50
НОМО-8	-7.34	31	69
НОМО-9	-7.37	1	99

HOMO-10	-7.53	0	100