Interconnected hierarchical NiCo₂O₄ microspheres as high performance

electrode material for supercapacitor

Ming Cheng,^a Hongsheng Fan,^a Yuanjun Song,^b Yimin Cui,^a and Rongming Wang^{*b}

- ^a Department of Physics, Beihang University, Beijing 100191, P. R. China
- ^b Beijing Key Laboratory for Magneto-Photoelectrical Composite and Interface Science, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, P. R. China

E-mail: rmwang@ustb.edu.cn

Fig. S1 Typical SEM images of the nickel-cobalt glycolate precursor synthesized with 1 mL deionized water and different amount of IPA and EG: (a) 40 mL IPA and 20 mL EG, (b) 35 mL IPA and 25 mL EG, (c) 30 mL IPA and 20 mL EG, (d) 25 mL IPA and 35 mL EG.

Fig. S2 Typical SEM images of the nickel-cobalt glycolate precursor synthesized with 25 mL IPA and 35 mL EG and different amount of deionized water: (a) 0 mL, (b) 0.5 mL, (c) 1 mL, (d) 1.5 mL.

Fig. S3 TGA curves of the NiCo₂O₄ precursor.

Fig. S4 SEM images of the obtained $NiCo_2O_4$ prouducts after calcined at in air at 250 °C (a,b) and 300 °C (c,d).

Fig. S5 XRD pattern (a) and EDS spectrum (b) of the IH-NiCo₂O₄ sample.

Fig. S6 (a) XRD pattern of the IH-Co₃O₄ sample. High resolution XPS spectra for the Co 2p (b) and O 1s (c) of the IH-Co₃O₄ sample. (d) Typical N₂ adsorption and desorption isotherms and the pore-size-distribution curves (inset) of the IH-Co₃O₄.

Fig. S7 TEM image (a) and corresponding SAED pattern (b) of an individual IH-Co₃O₄ microsphere. (c) TEM image of the local characteristic region of the IH-Co₃O₄ microsphere. (d) HRTEM lattice image of the IH-Co₃O₄ microsphere.

Fig. S8 EIS plots of the $IH-NiCo_2O_4$ and $IH-Co_3O_4$ and the equivalent circuit model for the EIS spectra.

Fig. S9 SEM images of the $IH-NiCo_2O_4$ elecrode before (a) and after (b) 7000 cycles at a high current density of 10 g A⁻¹.

Fig. S10 CV curves at different scan rates (a) and charge-discharge curves at different current densities (b) of the graphene electrode. (c) The corresponding specific capacitances at different current densities of the graphene electrode. (d) Compared CV curves of the IH-NiCo₂O₄ and graphene at a scan rate of 10 mV s⁻¹.

Material	Morphology	Mass loading (mg cm ⁻²)	Potential Window (V)	Specific capacitance@curre nt density	Capacity retention (%)
Rambutan-like NiCo ₂ O4 ¹	200nm	2.0	0-0.4	798 F g ^{−1} @0.5 A g ^{−1}	91.7(1500 cycles@2 A g ⁻¹)
Urchin like NiCo ₂ O4 ²	B-I Source	>1	0-0.45	658 F g ⁻¹ @1 A g ⁻¹	98.4(1000 cycles@10 A g⁻¹)
Hollow urchin-like NiCo ₂ O ₄ microspheres ³	(a)	2.5-3.5	0-0.5	950 F g ⁻¹ @1 A g ⁻¹	93.6(1500 cycles@6 A g ⁻¹)
Hollow NiCo ₂ O ₄ sub-microspheres ⁴	200 nm	8	0-0.4	678 F g ⁻¹ @1 A g ⁻¹	87(3500 cycles@10 A g ⁻¹)
Flower-like NiCo ₂ O ₄ hierarchitectures ⁵	d 10 <u>0</u> nm		0-0.55	1191.2 F g ⁻¹ @1 A g ⁻ 1	78(1200 cycles@1 A g ⁻¹)
Spinel NiCo ₂ O ₄ nanostructure ⁶	100 pm	1	0-0.4	1362 F g ⁻¹ @1 A g ⁻¹	41(1500 cycles@4 A g ⁻¹)
NiCo ₂ O ₄ nanoflake composites ⁷		2	0-0.4	1468 F g ⁻¹ @4 A g ⁻¹	85.5(5000 cycles@4 A g ⁻¹)

Table S1 A comparison with previously reported $NiCo_2O_4$ nanomaterials.

Nanowires buliding NiCo ₂ O ₄ architectures ⁸	b 50 <u>0 nm</u>	1.3	0-0.5	1080 F g ⁻¹ @2 A g ⁻¹	86.5(1500 cycles@4 A g ⁻¹)
Nanosheets buliding NiCo ₂ O ₄ architectures ⁸		1.3	0-0.5	1400 F g ⁻¹ @5 A g ⁻¹	94(1500 cycles@4 A g ⁻¹)
Nanorod- assembled NiCo ₂ O ₄ hollow microspheres ⁹	(с) <u>- 1µт</u>		0-0.5	764 F g ⁻¹ @2 A g ⁻¹	101.7(1500 cycles@2 A g ⁻¹)
NiCo ₂ O ₄ nanosheets ¹⁰			0-0.45	876 F g ⁻¹ @1 A g ⁻¹	88(1000 cycles@1 A g ⁻¹)
Hierarchical mesoporous NiCo ₂ O ₄ hollow nanocubes ¹¹	IOnm	1	0-0.45	795.6 F g⁻¹@1 A g⁻¹	97.5(2000 cycles@1 A g ⁻¹) 96.1(2000 cycles@2 A g ⁻¹)
Urchin like NiCo ₂ O4 ¹²	(i) 1 µm	2.1	0-0.55	436.1 F g⁻¹@1 A g⁻¹	No decay(1000 cycles@10 A g ⁻¹)
Mesoporous NiCo ₂ O ₄ nanospheres ¹³	(b) 100 nm	2	0-0.4	842 F g ⁻¹ @2 A g ⁻¹	107(1000 cycles@30 mV s ⁻ ¹)
Multiple hierarchical NiCo ₂ O ₄ ¹⁴		5.0-6.0	0-0.45	1393 F g ⁻¹ @ 0.5 A g ⁻¹	

Hierarchical NiCo ₂ O ₄ tetragonal microtubes ¹⁵		1.0	0-0.53	1387.9 F g⁻¹@2 A g⁻ 1	89.4(12000 cycles@10 A g ^{−1})
Hollow NiCo ₂ O ₄ submicrospheres ¹⁶			0-0.5	987 F g ⁻¹ @1 A g ⁻¹	No decay(5000 cycles@5 A g⁻¹)
NiCo₂O₄ double- shell hollow spheres ¹⁷	ŝ	3.76	0-0.4	781 F g ⁻¹ @1 A g ⁻¹	85.8(2000 cycles@2 A g ⁻¹)
Mesoporous NiCo ₂ O ₄ nanosheets ¹⁸	A Contraction of the second se	1	0-0.35	292 F g ⁻¹ @1 A g ⁻¹	90(2000 cycles@8 A g ⁻¹)
3D network-like mesoporous NiCo ₂ O4 ¹⁹	(d) 	1.0	0-0.5	931 F g ⁻¹ @3 A g ⁻¹	125.5(1000 cycles@3 A g ⁻¹)
IH-NiCo₂O₄ (This work)	e 5 <u>00 nm</u>	2.1	0-0.55	1822.3 F g⁻¹ @2 A g⁻¹	87.6(7000 cycles@10 A g ^{−1})

References

- 1. Y. Shang, Y. Gai, L. Wang, L. Hao, H. Lv, F. Dong and L. Gong, *Eur. J. Inorg.c Chem.*, 2017, **2017**, 2340.
- 2. J. Xiao and S. Yang, *RSC Adv.*, 2011, **1**, 588.
- 3. Y. Lei, Y. Wang, W. Yang, H. Yuan and D. Xiao, *RSC Adv.*, 2015, **5**, 7575.
- 4. C. Yuan, J. Li, L. Hou, J. Lin, G. Pang, L. Zhang, L. Lian and X. Zhang, *RSC Adv.*, 2013, **3**, 18573.
- 5. C. An, Y. Wang, Y. Huang, Y. Xu, C. Xu, L. Jiao and H. Yuan, *CrystEngComm*, 2014, **16**, 385.
- 6. S. Jiang, Y. Sun, H. Dai, P. Ni, W. Lu, Y. Wang, Z. Li and Z. Li, *Electrochim. Acta*, 2016, **191**, 364.
- 7. Y. Sun, X. Xiao, P. Ni, Y. Shi, H. Dai, J. Hu, Y. Wang, Z. Li and Z. Li, *Electrochim. Acta*, 2014, **121**,

270.

- 8. L. Yu, H. Wu, T. Wu and C. Yuan, *RSC Adv.*, 2013, **3**, 23709.
- 9. Y. Zhu, X. Ji, R. Yin, Z. Hu, X. Qiu, Z. Wu and Y. Liu, *RSC Adv.*, 2017, **7**, 11123.
- 10. L. Zhang, W. Zheng, H. Jiu, C. Ni, J. Chang and G. Qi, *Electrochim. Acta.*, 2016, **215**, 212.
- 11. C. Zheng, C. Cao, R. Chang, J. Hou and H. Zhai, *Phys. Chem. Chem. Phys.*, 2016, **18**, 6268.
- 12. J. Wang, Y. Zhang, J. Ye, H. Wei, J. Hao, J. Mu, S. Zhao and S. Hussain, *RSC Adv.*, 2016, **6**, 70077.
- 13. M. J. Pang, S. Jiang, G. H. Long, Y. Ji, W. Han, B. Wang, X. L. Liu, Y. L. Xi, F. Z. Xu and G. D. Wei, *RSC Adv.*, 2016, **6**, 67839.
- 14. S. Wang, S. Sun, S. Li, F. Gong, Y. Li, Q. Wu, P. Song, S. Fang and P. Wang, *Dalton T.*, 2016, **45**, 7469.
- 15. F.-X. Ma, L. Yu, C.-Y. Xu and X. W. Lou, *Energy Environ. Sci.*, 2016, **9**, 862.
- 16. Y. Zhu, J. Wang, Z. Wu, M. Jing, H. Hou, X. Jia and X. Ji, *J. Power Sources*, 2015, **287**, 307.
- 17. X. Li, L. Jiang, C. Zhou, J. Liu and H. Zeng, *NPG Asia Mater.*, 2015, **7**, e165.
- S. Khalid, C. Cao, A. Ahmad, L. Wang, M. Tanveer, I. Aslam, M. Tahir, F. Idrees and Y. Zhu, *RSC Adv.*, 2015, 5, 33146.
- Y. Zhu, Z. Wu, M. Jing, W. Song, H. Hou, X. Yang, Q. Chen and X. Ji, *Electrochim. Acta*, 2014, 149, 144.