Enhancements in Catalytic Reactivity and Selectivity of Homobimetallic Complexes Containing Heteroditopic Ligands

Mark R. D. Gatus,^{ab} Roy T. McBurney,^b Mohan Bhadbhade^c and Barbara A. Messerle^{ab*}

^aSchool of Chemistry, University of New South Wales, Sydney 2052, Australia.

^bDepartment of Chemistry and Biomolecular Sciences, Macquarie University, North Ryde 2109, Australia.

^cMark Wainwright Analytical Centre, University of New South Wales, Sydney 2052, Australia.

*barbara.messerle@mq.edu.au

Table of Contents

1. NMR Characterisation DataS3		
1.1	Diagnostic signals for 19c	S3
1.2	Diagnostic signals for 20c	S3
1.3	NMR Data for 6	S3
1.4	NMR Data for 7	S3
1.5	NMR Data for 8	S4
1.6	NMR Data for 9	S5
1.7	NMR Data for 10	S7
1.8	NMR Data for 11	S8
1.9	NMR Data for 12	S9
1.10	NMR Data for 13	S11
2. Crystallographic Experimental Data TablesS1		
3. References		

1. NMR Characterisation Data

The N-silylamines **18c** and **19c** could not be isolated and purified due to their ability to hydrolyse in air. Therefore the N-silylamines were identified by diagnostic signals in the ¹H NMR spectra. **18c** and **19c** were hydrolysed with water, purified and confirmed by comparison of the ¹H NMR spectra with literature.^[1]

1.1 Diagnostic signals for 19c

¹H NMR (500 MHz, C7D8): δ 7.60 (m, 2H, Ar**H**), 7.17 (m, 3H, Ar**H**), 5.76 (s, 1H, **H**SiPh2), 3.53 (m, 1H, H**4**), (3.04, 1.78, 1.64, 1.54, 1.27 (multiplets, 6H, belonging to H**1-3**)), 1.00 (d, ³*J*_{H-H} = 6.3 Hz, 3H, H**5**) ppm.

1.2 Diagnostic signals for 20c

¹H NMR (600 MHz, C_7D_8): δ 7.60 (m, 5H, Ar**H**), 7.18 (m, 5H, Ar**H**), 7.02 (m, 2H, Ar**H**), 6.97 (m, Ar**H**), 6.87 (d, ³J_{H-H} = 7.6 Hz, 2H, Ar**H**), 5.48 (1H, **H**SiPh₂), 3.69 (m, 1H, H**4**), 3.06 (t, ³J_{H-H} = 6.2 Hz, 2H, H**1**), 2.79 (dd, ²J_{H-H} = 13.2 Hz, ³J_{H-H} = 4.7 Hz, 1H, H**5**), 2.41 (dd, ²J_{H-H} =

13.2 Hz, ³*J*_{H-H} = 9.3 Hz, 1H, H**5**), 1.65-1.49 (m, 4H, H**2** and H**3**) ppm.

1.3 NMR Data for 6

¹H NMR (300 MHz, CDCl₃): δ 7.5 (d, ⁴J_{H-H} = 2.19 Hz, 2H, Ar**H**), 7.3 (d ⁴J_{H-H} = 2.22 Hz, 2H, Ar**H**), 1.6 (s, 6H, 2 x C**H**₃), 1.3 (s, 18H, 6 x C**H**₃) ppm.

 $^{13}C{^{1}H} NM (151 MHz, CDCl_3): \delta 147.4 (ArC), 145.4 (ArC), 131.3 (ArC), 128.61 (ArC), 121.7 (ArC), 110.6 (ArC), 35.9 (tert-butyl quart-C), 34.8 (dimethyl quart-C), 32.0 (dimethyl CH₃), 31.6 (tert-butyl CH₃) ppm.$

1.4 NMR Data for 7

¹H NMR (300 MHz, CDCl₃): δ 10.85 (s, 1H, CHO), 7.81 (d, ⁴J_{H-H} = 2.45 Hz, 1H, ArH), 7.67 (d, ⁴J_{H-H} = 2.49 Hz, 1H, ArH), 7.49 (d, ⁴J_{H-H} = 2.25 Hz, 1H, ArH), 7.37 (d, ⁴J_{H-H} = 2.25 Hz, 1H, ArH), 1.66 (s, 6H, 2 x CH₃), 1.35 (s, 9H, 3 x CH₃), 1.33 (s, 9H, 3 x CH₃) ppm.

¹³C NMR (151 MHz, CDCl₃): δ 189.9 (CHO), 150.8 (ArC), 147.7 (ArC), 146.3 (ArC), 144.4 (ArC), 131.0 (ArC), 130.8 (ArC), 129.5 (ArC), 129.2 (ArC), 128.5 (ArC), 124.1

(Ar**C**), 123.3 (Ar**C**), 122.7 (Ar**C**), 121.8 (Ar**C**), 110.4 (Ar**C**), 35.1 (tert-butyl quart-**C**), 34.7 (dimethyl quart-**C**), 32.0 (dimethyl **C**H₃), 31.4 (tert-butyl **C**H₃) ppm.

1.5 NMR Data for 8

¹H NMR (400 MHz, CDCl₃): δ 8.27 (s, 1H, H2'), 7.64 (d, ³J_{H-H} = 1.42 Hz, 2H, H3'), 7.50 (d, ³J_{H-H} = 2.31 Hz, 2H, H5'), 7.44 (d, ⁴J_{H-H} = 2.16 Hz, 1H, H8), 7.40 (d, ⁴J_{H-H} = 2.21 Hz, 1H, H3), 7.32 (d, ⁴J_{H-H} = 2.16 Hz, 1H, H1), 6.78 (d, ⁴J_{H-H} = 2.16 Hz, 1H, H6), 6.31 (t, ³J_{H-H} = 2.06 Hz, 2H, H4'), 1.62 (s, 6H, H14), 1.30 (s, 9H, H16), 1.23 (s, 9H,

¹³C{¹H} NMR (100.6 MHz, CDCl₃): δ 147.2 (C2), 146.1 (C7), 145.4 (C12), 144.60 (C11), 140.8 (C3'), 131.0 (C10), 129.9 (C5'), 129.6 (C13), 128.4 (C3), 124.0 (C8), 123.5 (C6), 122.8 (C5), 121.9 (C1), 110.4 (C4), 106.1 (C4'), 73.4 (C2'), 35.2 (C9), 34.7 (C15), 35.6 (C17), 32.4 (C14), 31.5 (C16), 31.4 (C18) ppm.

¹H#NMR#400#MHz,#CDCl₃)#pectrum#bf#(8)##

¹³C{¹H}#NMR#(100.6#MHz,#CDCl₃)#pectrum#bf#(8)#

1.6 NMR Data for 9

¹H NMR (600 MHz, CDCl₃): δ 7.72 (s, 1H, H2'), 7.67 (br s, 1H, HA/B), 7.56 (br s, 2H, H3'), 7.46 (d, ⁴*J*_{H-H} = 1.76 Hz, 1H, H1), 7.44 (d, ⁴*J*_{H-H} = 1.76 Hz, 1H, H8), 7.30 (br s, 1H, HA/B), 7.19 (d, ³*J*_{H-H} = 1.85 Hz, 2H, H5'), 7.13 (d, ⁴*J*_{H-H} = 1.76 Hz, 1H, H3), 7.10 (br s, 1H, HC), 6.63 (br d, 1H, H6), 6.25 (br t, 2H, H4'), 1.68 (s, 6H, H14), 1.33 (s, 9H,

H16), 1.21 (s, 9H, H18) ppm.

¹³C{¹H} NMR (150.9 MHz, CDCl₃): δ 146.6 (C2), 146.2 (C7), 144.6 (C12), 141.4 (C11), 140.7 (C3'), 137.8 (CA/B), 131.2 (C10), 130.1 (C5'), 129.5 (CA/B), 128.9 (C13), 124.7 (C4), 124.2 (C8), 123.8 (C6), 123.1 (C1), 122.9 (C5), 121.8 (C3), 121.1 (CC), 106.3 (C4'), 73.1 (C2'), 34.9 (C9), 34.7 (C15), 34.6 (C17), 32.8 (C14), 31.5 (C16), 31.4 (C18) ppm.

¹H**#**NMR**#**(600**#**MHz,**#**CDCl₃)**#**pectrum**#**bf**#**(**9**)**#**

H18) ppm.

¹H NMR (600 MHz, CDCl₃): δ 10.36 (s, 1H, HD), 8.07 (s, 1H, H2'), 7.56 (d, ⁴J_{H-H} = 2.15 Hz, 1H, H1), 7.54 (br d, 4H, H3' & H5'), 7.51 (br t, 1H, HB), 7.47 (d, ⁴J_{H-H} = 2.15 Hz, 1H, H8), 7.42 (d, ⁴J_{H-H} = 2.15 Hz, 1H, H3), 7.07 (br t, 1H, HC), 6.63 (d, ⁴J_{H-H} = 2.02 Hz, 1H, H6), 6.24 (t, ³J_{H-H} = 1.99 Hz, 2H, H4'), 4.38 (s, 3H, HA), 1.70 (s, 6H, H14), 1.34 (s, 9H, H16), 1.20 (s, 9H,

¹³C{¹H} NMR (150.9 MHz, CDCl₃): δ 147.8 (C2), 147.4 (C7), 143.9 (C12), 140.8 (C3'), 140.4 (C11), 137.8 (CD), 131.6 (C10), 130.1 (C5'), 128.9 (C13), 125.7 (C1), 124.7 (C8), 123.9 (CB), 123.7 (C6), 122.8 (C5), 122.5 (CC), 121.7 (C4), 121.6 (C3), 106.3 (C4'), 73.2 (C2'), 37.7 (CA), 35.1 (C15), 34.8 (C9), 34.7 (C17), 33.1 (C14), 31.5 (C16), 31.3 (C18) ppm.

¹H NMR (600 MHz, CDCl₃): δ 7.69 (s, 1H, H2'), 7.59 (d, ³*J*_{H-H} = 1.53 Hz, 2H, H3'), 7.50 (br d, 2H, H8 & 3), 7.33 (d, ⁴*J*_{H-H} = 2.27 Hz, 1H, H1), 7.14 (d, ³*J*_{H-H} = 1.69 Hz, 1H, HB), 7.06 (d, ³*J*_{H-H} = 2.48 Hz, 2H, H5'), 6.92 (d, ³*J*_{H-H} = 1.69 Hz, 1H, HC), 6.50 (d, ⁴*J*_{H-H} = 2.04 Hz, 1H, H6), 6.28 (dd, ³*J*_{H-H} = 2.18 Hz, 2H, H4'), 3.95 (s, 3H,

HA), 1.71 (s, 6H, H14), 1.35 (s, 9H, H16), 1.20 (s, 9H, H18) ppm. ¹³C{¹H} NMR (150.9 MHz, CDCl₃): δ 184.8 (CD), 147.1 (C2), 147.0 (C7), 144.6 (C12), 141.5 (C11), 140.9 (C3'), 131.0 (C10), 129.7 (C13), 129.1 (C5'), 126.9 (C4), 124.8 (C8), 123.9 (C3), 123.22 (C6), 123.22 (CC), 122.8 (C1), 122.4 (CB), 122.1 (C5), 106.6 (C4'), 73.5 (C2'), 38.9 (CA), 35.0 (C15), 35.0 (C9), 34.7 (C17), 32.7 (C14), 31.6 (C16), 31.3 (C18) ppm.

¹H#NMR#600#MHz,#CDCl₃)#pectrum#bf#(11)#

¹³C{¹H}#NMR#(150.9#MHz,#CDCl₃)#pectrum#bf#(**11**)#

1.9 NMR Data for 12

¹H NMR (600 MHz, CD_2CI_2 , 238 K): δ 9.27 (br s, 1H, H2'), 8.49 (br d, 1H, H5*), 7.95 (br d, 1H, H3*), 7.63 (d, ${}^4J_{\text{H-H}}$ = 2.23 Hz, 1H, H8), 7.62 (d, ${}^4J_{\text{H-H}}$ = 2.30 Hz, 1H, H1), 7.51 (br d, 1H, H3'), 7.29 (br s, 8H, *o*-CH of BPh₄), 7.17 (br d, 1H, HB), 7.06 (d, ${}^3J_{\text{H-H}}$ = 1.58 Hz, 1H, HC), 7.05 (br d, 1H, H3), 7.03 (t, ${}^3J_{\text{H-H}}$ = 7.56 Hz, 8H, *m*-CH of BPh₄), 6.86 (t, ${}^3J_{\text{H-H}}$ = 7.13 Hz, 4H, *p*-CH of BPh₄), 6.70 (br d, 1H, H6),

6.66 (br t, ³*J*_{H-H} = 2.36 Hz, 1H, H4*), 6.33 (br d, 1H, H5'), 6.10 (br t, 1H, H4'), 4.07 (s, 3H, HA), 1.77 (s, 3H, H14), 1.69 (s, 3H, H14), 1.30 (s, 9H, H18), 1.29 (s, 9H, H16) ppm.

¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, 238 K): δ 185.26 (d, ${}^{1}J_{RhNHC-CO} = 53.43$ Hz, CO), 182.23 (d, ${}^{1}J_{RhBpm-CO} = 72.13$ & 69.8 Hz 2x CO), 181.71(d, ${}^{1}J_{RhNHC-CO} = 75.69$ Hz, CO), 176.33 (d, ${}^{1}J_{Rh-C} = 44.86$ Hz, CD), 163.72 (d, ${}^{1}J_{B-C} = 49.85$ Hz, *ipso-*C of BPh₄), 146.74 (C2), 146.19 (C3^{*}), 146.08 (C3[']), 145.85 (C7), 144.42 (C12), 142.11 (C11), 135.64 (*o*-C of BPh₄), 135.61 (C5^{*}), 135.27 (C5[']), 130.14 (C10), 129.90 (C13), 128.54 (C4), 126.73 (C8), 125.76 (*m*-C of BPh₄), 125.60 (C3), 125.39 (C1), 125.05 (CC), 123.65 (CB), 122.37 (C6), 121.84 (*p*-C of BPh₄), 119.76 (C5), 108.79 (C4^{*}), 108.10 (C4'), 70.86 (C2'), 39.01 (CA), 34.64 (C17), 34.46 (C15), 34.28 (C9), 33.61 (C14), 33.42 (C14), 31.02 (C18), 30.76 (C16) ppm.

¹H NMR (600 MHz, CD₂Cl₂, 238K) spectrum of (**12**)

¹H NMR (600 MHz, CD_2Cl_2 , 233 K) δ 9.10 (s, 1H, H2'), 8.43 (d, ${}^{3}J_{H-H} = 2.9$ Hz, 1H, H5*), 8.11 (d, ${}^{3}J_{H-H} = 2.5$ Hz, 1H, H3*), 7.63 (d, ${}^{4}J_{H-H} = 1.52$ Hz, 1H, H3), 7.61 (br s, 2H, H3' & H6), 7.30 (br t, *J* = 5.8 Hz, 8H, *o*-CH of BPh₄), 7.12 (br d, 1H, HC), 7.08 (br d, 1H, H1), 7.02 (t, ${}^{3}J_{H-H} = 7.3$ Hz, 9H, *m*-CH of BPh₄ & HB), 6.85 (t, ${}^{3}J_{H-H} = 7.1$ Hz, 4H, *p*-CH of BPh₄), 6.74 (br t, ${}^{4}J_{H-H} = 2.8$

Hz, 1H, H4*), 6.70 (br d, 1H, H8), 6.24 (br d, ${}^{3}J_{H-H} = 2.7$ Hz, 1H, H5'), 6.10 (ap t, 1H, H4'), 4.01 (s, 3H, HD), 1.77 (s, 3H, H14), 1.68 (s, 3H, H14), 1.30 (s, 9H, H18), 1.29 (s, 9H, H16) ppm.

¹³C{¹H} NMR (151 MHz, CD₂Cl₂, 233 K): δ 181.02 (Ir_{NHC} -CO), 175.53 (CA), 170.65 (Ir_{Bpm} -CO), 169.60 (Ir_{Bpm} -CO), 166.69 (Ir_{NHC} -CO), 164.14-163.17 (q, ¹J_{B-C} = 48.86 Hz, *ipso*-C of BPh₄), 147.27 (C3'), 147.13 (C3*), 146.70 (C7), 145.76 (C2), 144.17 (C12), 141.91 (C11), 136.08 (C5*), 135.59 (*o*-C of BPh₄ & C5'), 129.88 (C10), 129.76 (C13), 127.12 (C6), 125.75 (*m*-C of BPh₄ & C3), 125.42 (C1), 125.11 (C4), 124.80 (CB), 123.68 (CC), 122.92 (C8), 121.83 (*p*-C of BPh₄), 118.91 (C5), 109.51 (C4*), 108.70 (C4'), 71.28 (C2'), 38.78 (CD), 34.59 (C17), 34.42 (C15), 34.14 (C9), 33.79 (C14), 33.54 (C14), 30.88 (C16), 30.70 (C18) ppm.

¹³C{¹H} NMR (150.9 MHz, CD₂Cl₂, 233K) spectrum of (**13**)

	22	
Chemical formula	$C_{51.25}H_{67}Cl_2N_6O_2Rh_2$	
M (g mol ⁻¹)	1075.82	
Crystal System	Monoclinic	
Space Group	C2/c	
Crystal Habit	Plates	
Temperature (K)	100	
a (Å)	15.018 (3)	
b (Å)	25.511 (5)	
c (Å)	27.991 (6)	
α (°)	90	
β (°)	93.13 (3)	
γ (°)	90	
V (Å ³)	10708 (4)	
Z	8	
Radiation type	Synchrotron, $\lambda = 0.71073$ Å	
μ (mm ⁻¹)	0.76	
Crystal size (mm)	0.02 × 0.02 × 0.01	
Refl. measured	68600	
Unique reflections	9437	
Obsd. Reflections	7457	
[l > 2σ(l)]		
Rint	0.06	
R[F ² > 2σ(F ²)]	0.055	
wR(F ²)	0.166	
S	1.06	
Reflections used	9437	
Parameters	7457	
Restraints	H-atom parameters constrained	
Δρmax, Δρmin (e Å-³)	1.40, -1.21	

2. Crystallographic Experimental Data Tables

3. References

[1] a) H. V. Secor and J. I. Seeman, *Heterocycles* **1986**, *24*, 1687-1698; b) C. Quinet, P. Jourdain, C. Hermans, A. Ates, I. Lucas and I. E. Marko, *Tetrahedron* **2007**, *64*, 1077-1087.