Supporting Information

Organocatalytic hydroborylation promoted by *N*-heterocyclic olefins

Christian Hering-Junghans, Ian C. Watson, Michael J. Ferguson, Robert McDonald, and Eric Rivard*

Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, Alberta, Canada T6G 2G2

Contents

Complete Experimental Procedures	S2
X-ray Crystallographic data	S12
Computational Studies	S14
References	S28

Experimental Procedures:

General. All reactions were performed using standard Schlenk line techniques under an atmosphere of nitrogen or in an inert atmosphere glovebox (Innovative Technology, Inc.). Solvents were dried using a Grubbs-type solvent purification system¹ manufactured by Innovative Technology, Inc., degassed (freeze–pump–thaw method), and stored under an atmosphere of nitrogen prior to use. MeOTf, Li[BH₄], THF•BH₃, Ph₂CO, (4-Cl-Ph)₂CO, MeCO(Ph), ¹BuCOMe, 4-CH₃CO-C₆H₄-CHO and MesCHO were purchased from Aldrich and used as received. IPrCH₂, ² MeIPrCH₂, ² IPrCHGeCl₃, ³ MeIPrCHGeCl₃, ³ and (^{Me}IPrCH)SiMe₃³ were prepared according to literature procedures. ¹H, ¹¹B{¹H}, ¹³C{¹H} and ¹⁹F{¹H} NMR spectra were recorded on a Varian VNMRS-500 spectrometer and referenced externally to SiMe₄ (¹H, ¹³C{¹H}), F₃B•OEt₂ (¹¹B), or CFCl₃ (¹⁹F{¹H}). Elemental analyses were performed by the Analytical and Instrumentation Laboratory at the University of Alberta. Melting points were measured in sealed glass capillaries under nitrogen using a MelTemp apparatus and are uncorrected.

X-ray Crystallography. Crystals of appropriate quality for X-ray diffraction studies were removed from either a Schlenk tube under a stream of nitrogen, or from a vial (glove box) and immediately covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then selected, attached to a glass fiber, and quickly placed in a low-temperature stream of nitrogen. All data were collected using a Bruker APEX II CCD detector/D8 diffractometer using Cu Ka radiation, with the crystal cooled to -100 °C. The data were corrected for absorption through Gaussian integration from indexing of the crystal faces. Structures were solved using the direct methods programs SHELXT-2014,⁴ and refinements were completed using the program SHELXL-2014.⁴ Hydrogen atoms were assigned positions based on the sp² or sp³ hybridization geometries of their attached carbon atoms, and were given thermal parameters 20 % greater than those of their parent atoms.

Synthetic Procedures.

Synthesis of (MeIPrCH)B2H5 (3a) from (MeIPrCH)GeCl3.

$$(^{Me}IPrCH)GeCl_3 \xrightarrow{3 LiBH_4} (^{Me}IPrCH)B_2H_5$$

Et₂O, RT

To a mixture of (^{Me}IPrCH)GeCl₃ (0.148 g, 0.24 mmol) and LiBH₄ (0.017 g, 0.75 mmol) was added 10 mL of Et₂O at room temperature, which was accompanied by vigorous bubbling. Stirring was continued for 4 hrs. The resulting yellow precipitate was allowed to settle and the supernatant filtered through a plug of Celite. The volatiles were evaporated from the filtrate to give (^{Me}IPrCH)B₂H₅ (**3a**) as an off-white solid (0.093 g, 85 %). X-ray quality crystals of **3a** were obtained by placing a saturated toluene solution layered with hexanes at -30 °C for 24 hrs.

Alternate Synthesis of (MeIPrCH)B2H5 (3a) from (MeIPrCH)SiMe3.

$$({}^{Me}IPrCH)SiMe_3 \xrightarrow{2 \text{ THF+BH}_3} ({}^{Me}IPrCH)B_2H_5$$
$$-Me_3SiH$$
toluene, RT

To (^{Me}IPrCH)SiMe₃ (0.084 g, 0.17 mmol) in 5 mL of toluene was added dropwise THF•BH₃ (1.0 M solution in THF, 0.340 mL, 0.34 mmol) at ambient temperature. After 12 hrs of stirring at room temperature, the resulting mixture was evaporated to dryness, and the remaining residue was washed with hexanes (2 x 3 mL) and the remaining solid dried *in vacuo* to yield (^{Me}IPrCH)B₂H₅ (**3b**) in the form of a colorless solid (0.065 g, 84 %).

¹H NMR (498 MHz, C₆D₆): $\delta = 7.21$ (t, ³*J*_{HH} = 7.3 Hz, 2H, Ar*H*), 7.07 (d, ³*J*_{HH} = 7.3 Hz, 4H, Ar*H*), 6.06 (s, 2H, N-C*H*), 2.78 (sept, 4H, ³*J*_{HH} = 6.6 Hz, C*H*(CH₃)₂), 1.62 (br, 1H, C*H*(B₂H₅)), 1.43 (d, ³*J*_{HH} = 7.3 Hz, 12H, CH(C*H*₃)₂), 1.09 (br, 4H, B*H*₂), 1.01 (d, ³*J*_{HH} = 6.6 Hz, 12H, CH(C*H*₃)₂), -0.88 (br, 1H, (BH₂)₂- μ -*H*). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 9.3$ (H₃*C*-CN), 11.9 (br, CCH(B₂H₅)), 24.2 (CH(CH₃)₂), 24.4 (CH(CH₃)₂), 29.0 (CH(CH₃)₂), 55.7 (CCHGeCl₃), 122.7 (NC-CH₃), 124.7 (ArC), 130.6 (ArC), 131.6 (ArC), 146.7 (ArC), 165.2 (NCN). ¹¹B{¹H} (159.8 MHz, C₆D₆): $\delta = -29.0$. Anal. calcd. for C₃₀H₄₆N₂B₂: C, 78.96; H, 10.16; N, 6.14. Found: C, 77.93; H, 10.30; N, 6.11 %. Mp (°C): 176.

Fig. S1. ¹H NMR spectrum of **3a** in C_6D_6 .

Fig. S2. ${}^{13}C{}^{1}H$ NMR spectrum of 3a in C₆D₆.

Synthesis of (IPrCH)B₂H₅ (3b):

$$(IPrCH)GeCl_3 \xrightarrow{3 \text{ LiBH}_4} (IPrCH)B_2H_5$$
$$Et_2O, RT$$

To a mixture of solid (IPrCH)GeCl₃ (0.298 g, 0.51 mmol) and LiBH₄ (0.032 g, 1.51 mmol) was added 10 mL of Et₂O at room temperature, leading to the immediate bubbling of the reaction mixture. Stirring was continued for 12 hrs. The resulting precipitate was allowed to settle and the supernatant was filtered through a plug of Celite. The volatiles were removed under vacuum from the filtrate to give (IPrCH)B₂H₅ (**3b**) as an off-white solid (0.201 g, 92 %). X-ray quality crystals of **3b** were obtained from a saturated toluene solution layered with hexanes placed at -30 °C for 24 hrs.

¹H NMR (498 MHz, C₆D₆): $\delta = 7.18$ (t, ³*J*_{HH} = 7.3 Hz, 2H, Ar*H*), 7.04 (d, ³*J*_{HH} = 7.3 Hz, 4H, Ar*H*), 6.05 (s, 2H, N-C*H*), 2.87 (sept, 4H, ³*J*_{HH} = 6.6 Hz, C*H*(CH₃)₂), 1.67 (br, 1H, C*H*(B₂H₅)), 1.40 (d, ³*J*_{HH} = 7.3 Hz, 12H, CH(C*H*₃)₂), 1.10 (br, 4H, B*H*₂), 1.03 (d, ³*J*_{HH} = 6.6 Hz, 12H, CH(C*H*₃)₂), -0.89 (br, 1H, (BH₂)₂- μ -*H*). ¹³C{¹H} NMR (125 MHz, C₆D₆): $\delta = 12.5$ (br, CH(B₂H₅)), 21.4 (CCH(B₂H₅)), 24.0 (CH(CH₃)₂), 25.1 (CH(CH₃)₂), 29.2 (CH(CH₃)₂), 119.8 (NCH), 124.3 (Ar*C*), 130.8 (Ar*C*), 133.1 (Ar*C*), 146.5 (Ar*C*), 165.9 (N*C*N). ¹¹B{¹H} NMR (159.8 MHz, C₆D₆): $\delta = -28.9$. Anal. calcd. for C₂₈H₄₂N₂B₂: C, 78.53; H, 9.89; N, 6.54. Found: C, 77.34; H, 9.83; N, 6.66 %. Mp (°C): 136 (decomposition). Despite repeated attempts, analyses for carbon content were repeatedly low. See Figs. S3 and S4 for copies of the NMR spectra for **3b**.

Fig. S3. ¹H NMR spectrum of **3b** in C_6D_6 .

Fig. S4. ${}^{13}C{}^{1}H$ NMR spectrum of **3b** in C₆D₆.

Synthesis of (IPrCH)B₂H₄OTf (4):

$$(IPrCH)B_{2}H_{5} \xrightarrow{3 \text{ MeOTf}} (IPrCH)B_{2}H_{4}\text{OTf}$$

To (IPrCH)B₂H₅ (103 mg, 0.24 mmol) in 10 mL of fluorobenzene was added MeOTf (123 mg, 0.75 mmol) and stirring was continued for 16 hrs. The resulting cloudy mixture was filtered through a pad of Celite and the solvent was evaporated from the filtrate *in vacuo*. The remaining off-white solid was washed with hexanes (3 x 2 mL) and (IPrCH)B₂H₄OTf (4) was recovered as a white solid (0.115 g, 83 %). X-ray quality crystals of 4 were obtained from a saturated CH₂Cl₂ solution layered with hexanes, placed at -30 °C for 24 hrs.

¹H NMR (699.76 MHz, CDCl₃): δ = 7.12 (t, ³*J*_{HH} = 7.7 Hz, 2H, Ar*H*), 7.00 (d, ³*J*_{HH} = 7.7 Hz, 2H, Ar*H*), 6.97 (d, ³*J*_{HH} = 7.7 Hz, 2H, Ar*H*), 6.04 (d, ³*J*_{HH} = 1.5 Hz, 2H, *H*CN), 2.63 (sept, ³*J*_{HH} = 6.8 Hz, 4H, C*H*(CH₃)₂), 1.60 (d, 2H, -C*H*B₂H₄(OTf)), 1.39 (d, ³*J*_{HH} = 7.0 Hz, 6H, CH(C*H*₃)₂), 1.32 (d, ³*J*_{HH} = 7.0 Hz, 6H, CH(C*H*₃)₂), 0.96 (d, ³*J*_{HH} = 6.8 Hz, 6H, CH(C*H*₃)₂), 0.95 (d, ³*J*_{HH} = 6.8 Hz, 6H, CH(C*H*₃)₂). The hydrides attached to the ¹¹B atoms could not be detected reliably in variable temperature experiments due to severe broadening and possible overlap with Dipp ^{*i*}Pr-group signals. ¹³C{¹H} NMR (125.7 MHz, CDCl₃): δ = 12.8 (br, CH(B₂H₅)), 22.5 (CH(CH₃)₂), 22.6 (CH(CH₃)₂), 25.1 (CH(CH₃)₂), 25.2 (CH(CH₃)₂), 29.3 (CH(CH₃)₂), 29.4 (CH(CH₃)₂), 120.9 (HCN), 124.53 (ArC), 124.55 (ArC), 131.6 (ArC), 131.7 (ArC), 145.9 (ArC), 146.3 (ArC), 161.5 (NCN). ¹¹B{¹H} (159.8 MHz, C₆D₆): δ = -11.1 (-*B*H(OTf)) -26.7 (-*B*H₂-). ¹⁹F NMR (376.3 MHz, C₆D₆): δ = -76.5. Anal. calcd. for C₂₉H₄₁B₂F₃N₂O₃S: C, 60.44; H, 7.17; N, 4.86. Found C, 59.56; H, 7.16; N, 4.63; %. Mp: 161 °C.

Reaction of IPrCH₂ with HBPin:

IPrCH₂ (0.100 g, 0.248 mmol) was dissolved in 2 mL of THF and stirred for 5 minutes. To this solution, HBPin (0.032 g, 0.25 mmol) was added dropwise. NMR analysis after 30 hours, showed a 42% conversion of IPrCH₂ to a product tentatively formulated as IPrCH₂B(H)Pin and 7% conversion to a new unknown product was observed. Attempts to isolate pure IPrCH₂B(H)Pin by fractional crystallization have been unsuccessful so far.

NMR Data for IPrCH₂B(H)Pin: ¹H NMR (500 MHz, C₆D₆): 7.21-7.18 (m, 2H, Ar*H*), 7.15 (m, 1H, Ar*H*), 7.13 (d, 2H, Ar*H*), 7.11 (t, 1H, Ar*H*) 5.66 (s, 2H, *H*CN), 4.01 (sept, 2H, C*H*(CH₃)₂), 3.86 (m, 2H, C*H*(CH₃)₂, 1.54 (s, 2H, C*H*₂B), 1.30 (d, 6H, CH(C*H*₃)₂), 1.28 (d, 6H, CH(C*H*₃)₂, 1.23 (d, 6H, CH(C*H*₃), 1.16 (d, 6H, CH(C*H*₃) 1.01 (s, 12H, BOC(C*H*₃)₂); the borate B-H resonance could not be found. ¹¹B NMR (128.169 MHz, C₆D₆): 21.9.

Fig. S5. ¹H NMR spectrum of **4** in C_6D_6 .

Fig. S6. ${}^{13}C{}^{1}H$ NMR spectrum of 4 in C₆D₆.

Fig. S7. POV-ray depiction of the molecular structure of **4**. Ellipsoids are drawn at a 30% probability with all carbon-bound hydrogen except the one attached to C4A omitted; the flanking Dipp-groups rendered as wireframe for clarity. Selected bond lengths (Å) and angles (°) [minor orientation]: C1–C3 1.505(5), C3–B1 1.569(6), C3–B2 1.546(6), B1–B2 1.926(7), O1–B2 1.533(6); B2–C3–B1 76.4(3), C1–C3–B1–B2 117.3(4).

General procedure for the hydroborylation of various aldehydes and ketones:

1.1 HBPin + R-CO-R' $\xrightarrow{5 \text{ mol}\% \text{ IPrCH}_2}$ R-CHR'-O(BPin) THF, RT

A solution containing the ketone/aldehyde (0.50 mmol) dissolved in 1.6 mL of THF was combined with a 0.4 mL THF solution of the NHO catalyst (1-5 mol%, 0.005-0.025 mmol; IPrCH₂ 0.010 g; 0.011 g ^{Me}IPrCH₂) in a 20 mL scintillation vial and stirred for 5 minutes at room temperature. Afterwards, HBPin (0.070 g, 0.55 mmol) was added and the reaction progress was monitored by ¹H NMR spectroscopy, with sampling of 0.2 mL aliquots after various times.

Cat.	Cat. [mol%]	R/R' (in $RC(O)R'$)	t	Yield [%] ^[a]	TOF [h ⁻¹]
IPrCH ₂	5	Ph/Ph	18 hrs	99	1.1
IPrCH ₂	5	Ph/Ph	5 h at 60 °C	>99	4.0
IPrCH ₂	5	Mes/H	12 min	>99	99
IPrCH ₂	5	$4-MeCO(C_6H_4)/H$	6 min	>99	116
IPrCH ₂	5	Ph/Me	18 hrs	73	0.8
IPrCH ₂	1	$4-Cl(C_6H_4)/4-Cl(C_6H_4)$	15 min	>99	396
IPrCH ₂	5	$4-Cl(C_6H_4)/4-Cl(C_6H_4)$	5 min	>99	238
IPrCH ₂	2	Mes/H	1 hrs	>99	50
IPrCH ₂	5	cyclohexanone	18 hrs	58	0.6
IPrCH ₂	5	Cy/H	3 hrs	> 99	6.7
MeIPrCH ₂	5	$4-Cl(C_6H_4)/4-Cl(C_6H_4)$	5 min	>99	2380
IPr	5	Mes/H	24 hrs	79	0.7
IPr	5	$4-Cl(C_6H_4)/4-Cl(C_6H_4)$	24 hrs	9	0.08

^[a] Yield determined by ¹H NMR integration in C_6D_6 .

Catalytic hydroboration of MesCHO using ^{Me}IPrCH₂ as a catalyst:

1.1 HBPin + MesCHO
$$\frac{5 \text{ mol}\% \text{ }^{\text{Me}|\text{PrCH}_2}}{\text{THF, RT}} \text{ MesCH}_2\text{O(BPin)}$$

MesCHO (0.50 mmol, 0.074 g) was dissolved in THF (1.6 mL) in a 20 mL scintillation vial and a solution containing IPrCH₂ (5 mol%, 0.025 mmol, 0.009 g) in 0.4 mL of THF was added and the mixture stirred for 5 min at room temperature. Afterwards HBPin (0.070 g, 0.55 mmol) was added and the reaction progress was monitored by ¹H NMR spectroscopy which indicated that full conversion to the borylated product MesCH₂O(BPin) was achieved after 5 minutes.

Catalytic hydroboration of MesCHO testing IPr as a catalyst:

MesCHO (0.50 mmol, 0.074 g) was dissolved in THF (1.6 mL) in a 20 mL scintillation vial and a solution containing IPrCH₂ (5 mol%, 0.025 mmol, 0.009 g) in 0.4 mL of THF was added and the mixture stirred for 5 min at room temperature. Afterwards HBPin (0.070 g, 0.55 mmol) was added and the extent of reaction was monitored by ¹H NMR spectroscopy with a 79 % conversion into MesCH₂O(BPin) detected after 24 hrs.

Catalytic hydroboration of (4-Cl-C₆H₄)₂CO testing IPr as a catalyst:

5 mol% IPr
1.1 HBPin +
$$(4-CI-C_6H_4)_2CO \longrightarrow (4-CI-C_6H_4)_2CHO(BPin)$$

THF, RT

 $(4-Cl-C_6H_4)_2CO$ (0.50 mmol, 0.126 g) was dissolved in 1.6 mL of THF in a 20 mL scintillation vial and a solution containing IPr (5 mol%, 0.025 mmol, 0.009 g) in 0.4 mL of THF was added, and the mixture stirred for 5 min at room temperature. Afterwards HBPin (0.070 g, 0.55 mmol)

was added and the reaction progress was monitored by ¹H NMR spectroscopy, revealing the formation of a small amount (9 % conversion) of $(4-Cl-C_6H_4)_2CHO(BPin)$ after 24 hrs.

Catalytic hydrosilylation of MesCHO using IPrCH₂ as a catalyst:

1.1 Ph(Me)SiH₂ + MesCHO \longrightarrow MesCH₂OSiH(Me)Ph THF, RT

MesCHO (0.50 mmol, 0.074 g) was dissolved in THF (1.6 mL) in a 20 mL scintillation vial and a solution containing IPrCH₂ (5 mol%, 0.025 mmol, 0.009 g) in 0.4 mL of THF was added and the mixture stirred for 5 min at room temperature. Afterwards Ph(Me)SiH₂ (0.066 g, 0.54 mmol) was added and the reaction progress was monitored by ¹H NMR spectroscopy, indicating a 28 % conversion into the previously unknown silylated product MesCH₂OSiH(Me)Ph after 2 hrs at 60 °C. ⁶

¹H NMR (498 MHz, C₆D₆): δ = 7.60-7.53 (m, 2H, Ph*H*), 7.23-7.12 (m, 3H, Ph*H*), 6.72 (s, 2H, Mes*H*), 5.08 (q, ³*J*_{HH} = 2.9 Hz, 1H, SiH), 4.70 (s, 2H, CH₂), 2.26 (s, 6H, 2,6-Me), 2.11 (s, 3H, 4-Me), 0.32 (d, ³*J*_{HH} = 2.8 Hz, 3H, SiMe).

¹H NMR Data for R-CHR'-O(BPin):

Ph₂CH(OBpin):⁵

¹H NMR (498 MHz, C₆D₆): δ = 7.44 (m, 2H, Ar*H*), 7.07 (m, 2H, Ar*H*), 6.99 (m, 1H, Ar*H*), 6.42 (s, 1H, Ph₂C*H*(OBPin)), 0.97 (s, 12H, BPin).

(4-Cl-C₆H₄)₂CH(OBpin):⁶

¹H NMR (498 MHz, C_6D_6): $\delta = 7.04$ (br, 8H, Ar*H*), 6.11 (s, 1H, (4-Cl- C_6H_4)₂C*H*(OBPin)), 0.96 (s, 12H, BPin).

PhCH(OBpin)Me:⁵

¹H NMR (498 MHz, C₆D₆): δ = 7.38-7.34 (m, ³J_{HH} = 7.3 Hz, 2H, Ar*H*), 7.16-7.02 (m, 3H, Ar*H*), 5.41 (q, ³J_{HH} = 6.4 Hz, 1H, PhC*H*(OBPin)Me), 1.45 (d, ³J_{HH} = 6.4 Hz, 3H, -C(OBPin)H(C*H*₃)), 1.02 (s, 6H, BPin), 0.99 (s, 6H, BPin).

4-MeC(O)-C₆H₄-CH₂(OBPin):⁶

¹H NMR (498 MHz, C₆D₆): δ = 7.73 (d, ³*J*_{HH} = 8.2 Hz, 2H, Ar*H*), 7.20 (d, ³*J*_{HH} = 8.2 Hz, 2H, Ar*H*), 4.87 (s, 1H, 4-MeC(O)-C₆H₄-C*H*₂(OBPin)), 2.07 (s, 3H, 4-*H*₃CCO-), 1.03 (s, 12H, BPin).

MesCH₂(OBPin):⁶

¹H NMR (498 MHz, C₆D₆): $\delta = 6.72$ (s, 2H, Ar*H*), 4.87 (s, 2H, MesC*H*₂(OBPin)), 2.37 (s, 6H, 2,6-Me), 2.10 (s, 3H, 4-Me), 1.03 (s, 12H, BPin).

A. Crystal Data	
formula	95.5%(C ₂₈ H ₄₂ B ₂ N ₂), 4.5%(C ₂₈ H ₄₁ BGeN ₂)•C ₇ H ₈ ^a
formula weight	520.39
crystal dimensions (mm)	$0.255 \times 0.166 \times 0.046$
crystal system	monoclinic
space group	$P2_1/c$ (No. 14)
unit cell parameters	
a (Å)	10.5280(2)
$b(\mathbf{A})$	21.2551(4)
<i>c</i> (Å)	15.0977(3)
β (°)	96.2800(10)
$V(\dot{A}^3)$	3358.19(11)
Z	4
ρ calcd (g cm ⁻³)	1.035
$\mu (\text{mm}^{-1})$	0.473

Table S1. Crystallographic Experimental Details for (IPrCH)B₂H₅ (3b).

B. Data Collection and Refinement Conditions

diffractometer	Bruker APEX II CCD
radiation (λ [Å])	Cu Kα (1.54178)
temperature (°C)	-100
scan type	ω and φ scans (1°) (10 s exposures)
data collection 2θ limit (deg)	135
total data collected	$22040 \ (-12 \le h \le 12, -25 \le k \le 25, -16 \le l \le 18)$
independent reflections	$6165 (R_{int} = 0.0334)2$
number of observed reflections (NO)	$4508 \ [Fo^2 \ge 2\sigma(Fo^2)]$
structure solution method	intrinsic phasing (SHELXT-2014)
refinement method	full-matrix least-squares on F^2 (SHELXL-2014/7) ^d
absorption correction method	Gaussian integration (face-indexed)
range of transmission factors	0.8497 - 1.0000
data/restraints/parameters	6165 / 2 / 391
goodness-of-fit (S) [all data]	1.039
final <i>R</i> indices	
$R_1 \left[Fo^2 \ge 2\sigma (Fo^2) \right]$	0.0598
wR_2 [all data]	0.1784
largest difference peak and hole	0.467 and $-0.242 \text{ e} \text{ Å}^{-3}$

^a The elongation of the ADP for B2 and the largest peak in the difference map being ca. 2 angstroms from C4 suggest partial Ge occupation of this site and refinement with a 4.5% Ge-H occupancy significantly improved the model. The occupancy of the minor component was allowed to refine freely. As our initial idea was to make a IPrCHGeH hydride species via the synthetic route applied a germanium contamination cannot be excluded in his crystal.

Table S2. Crystallographic Experimental Details for $(IPrCH)B_2H_4OTf(4)$.

A. Crystal Data	
formula	$C_{29}H_{41}B_2F_3N_2O_3S$
formula weight	576.32
crystal dimensions (mm)	$0.528 \times 0.208 \times 0.126$
crystal system	orthorhombic
space group	<i>Pnma</i> (No. 62)
unit cell parameters	
<i>a</i> (Å)	18.1783(3)
<i>b</i> (Å)	9.80200(10)
c(Å)	17.8683(3)
$V(Å^3)$	3358.19(11)
Z	4
ρ calcd (g cm ⁻³)	1.202
$\mu (\text{mm}^{-1})$	1.311

B. Data Collection and Refinement Conditions

Bruker APEX II CCD
Cu Ka (1.54178)
-100
ω and φ scans (1°) (10 s exposures)
142
$21558 (-22 \le h \le 22, -22 \le k \le 20, -12 \le l \le 12)$
3336 (Rint = 0.0416)
$2950 \left[Fo^2 \ge 2\sigma (Fo^2) \right]$
intrinsic phasing (SHELXT-2014)
full-matrix least-squares on F^2 (SHELXL-2014/7)
Gaussian integration (face-indexed)
0.5411 - 1.0000
3336 / 1 / 219
1.057
0.0759
0.2293
$0.283 \text{ and } -0.367 \text{ e } \text{\AA}^{-3}$

2. Computational Studies

Density Functional theory (DFT) calculations (full geometry optimisation) were carried out on **3a** starting from the geometry of its crystal structure and on the intermediates **A** and **B** proposed in Scheme S1 with the Gaussian09 program package⁷ (BP86 functional with def2-SVP basis set for B, C, H, N, O, F, S). The optimized structures were in reasonable agreement with the observed molecular structures. All stationary points were characterized by frequency analyses. For all calculated molecules and intermediates there are no imaginary frequencies. The optimized structures were subjected to natural bond orbital (NBO) analysis.⁸

It should be emphasized that the computation was carried out for a single, isolated (gas phase) species. There may well be significant differences among gas-phase, solution, and solid-state data.

Scheme S2. Alternative mechanism for the hydroborylation of R(CO)R' with [IPrCH₂-B(H)Pin] (A₂) as a catalyst.

Optimization results for (IPrCH)B2H5 (3a)

Fig. S8. POV-ray depiction of the optimized structure of 3a (top) with a second view (bottom) in which the Dipp-groups have been omitted for clarity. Atom numbers as they appear in the output-file. Selected computed bond lengths and Wiberg bond indices (in parentheses) are shown in the bottom view. xyz-coordinates for the optimized structure of (IPrCH)B₂H₅, checked to be a minimum on the energy hyper-surface by a frequency analysis.

Optimized xyz-coordinates for (IPrCH)B₂H₅ (3a):

С	3.12670500	-3.43990900	-1.34733200
С	-2.64173600	-3.07141100	-1.73163000
С	-2.83346400	-3.67618900	0.72368900
С	2.49488700	-2.58700500	-0.22626400
С	-2.41693000	-2.58447100	-0.28066200
С	2.43800800	-3.35858200	1.11039400
С	0.70142000	0.00007100	-1.92189500
Č	-0.66144600	0.00008400	-1.87299900
Č	3 21179100	-1 24629900	-0.06522400
C	4 58060200	-1 21500400	0 27244300
C	-3 12278700	-1 24660900	-0.04652500
C	-4 50515500	-1 21447000	0 22957900
C	2 54876700	-0.00000600	-0 22846200
C	5 25945000	-0.00000000	0.44035300
C C	2 1/1001800	0.00007000	0.15037300
C	0.08286000	0.00002800	0.28210000
C C	0.08280000	-0.00001300	0.28219000
C	-2.04183100	0.0001200	-1./5155400
C	-3.18913300	-0.00001200	0.3/34/400
C	3.21180200	1.24625700	-0.0652/500
C	4.5806/200	1.21489600	0.2/239100
C	-3.12280300	1.24664800	-0.04642100
C	-4.5051/000	1.21446500	0.22968/00
C	0.25692300	-0.00009600	1./040/600
C	3.12689000	3.43975300	-1.34/5/800
C	-2.4169/000	2.58454400	-0.28043500
C	2.49504900	2.58700100	-0.22640600
C	2.43828300	3.358/1000	1.11018100
C	-2.83347200	3.67613800	0.72406300
H	2.55671900	-4.38259200	-1.48498700
Н	-2.10695500	-4.02828100	-1.91066000
Н	4.17499000	-3.71900000	-1.10884900
Н	3.13608900	-2.90155800	-2.31785600
Н	-3.72120100	-3.24495300	-1.92850200
Н	-2.27892600	-2.33795800	-2.48017700
Н	-2.21149100	-4.58392700	0.57816100
Н	-3.89191100	-3.98429200	0.58825300
Н	1.88122700	-4.31065500	0.98297600
Н	1.39715000	0.00009100	-2.76556000
Н	-1.41082000	0.00011500	-2.66878600
Н	3.45530600	-3.61279400	1.47712600
Н	1.44729100	-2.37471700	-0.52544300
Н	-1.32873500	-2.41138900	-0.14465300
Η	5.12280300	-2.16374100	0.41078900
Η	-2.69843200	-3.33165900	1.76790800
Н	-5.05525000	-2.16199600	0.33380300
Н	1.92509400	-2.76815200	1.89621700
Н	-2.27906500	2.33829800	-2.47998700
Н	6.32814400	-0.00009500	0.70789100
Н	3.13619400	2.90131100	-2.31805300
Н	-1.57750000	-1.51170900	2.27352000
Н	-3.72132700	3.24520500	-1.92813500
Н	-6.26841900	-0.00002900	0.59485400
Н	-2.10709200	4.02855500	-1.91027300

Н	1.44742600	2.37476600	-0.52552500
Н	5.12292900	2.16360800	0.41069200
Н	-1.32876600	2.41146100	-0.14449600
Н	0.08335500	-1.55329700	3.53409500
Н	1.33722800	-0.00014600	1.92541200
Н	-5.05527600	2.16197500	0.33399700
Н	4.17520600	3.71878400	-1.10916200
Н	2.55697200	4.38246800	-1.48529600
Н	-1.19160200	-0.00010500	3.51260100
Н	-1.57737400	1.51162600	2.27362900
Н	1.92533700	2.76840400	1.89607400
Н	-3.89193100	3.98423800	0.58871600
Н	-2.21152200	4.58390400	0.57861000
Н	3.45561600	3.61286500	1.47685600
Н	1.88158600	4.31082100	0.98268800
Н	-2.69838200	3.33148900	1.76823500
Н	0.08347800	1.55298500	3.53421600
В	-0.60614200	-0.93941200	2.73187500
В	-0.60606700	0.93921400	2.73195000
N	1.15318300	0.00001900	-0.60069200
N	-1.04418300	0.00004500	-0.52477500

NBO results for (IPrCH)B₂H₅ (3a).

```
46. (1.97202) BD (1) C 16 - C 23 (1.432 Å, WBI = 1.23)
        (51.47%) 0.7174* C 16 s(45.05%)p 1.22(54.94%)d 0.00(0.01%)
        (48.53%) 0.6967* C 23 s(29.86%)p 2.35(70.10%)d 0.00(0.04%)
62. (1.95249) BD (1) C 23 - H 58 (WBI = 0.86)
        (63.84%) 0.7990* C 23 s(23.22%)p 3.30(76.75%)d 0.00(0.02%)
        (36.16%) 0.6013* H 58 s(99.94%)p 0.00(0.06%)
63. (1.80478) BD (1) C 23 - B 71 (1.638 Å, WBI = 0.75)
        (69.63%) 0.8344* C 23 s(23.40%)p 3.27(76.59%)d 0.00(0.01%)
        (30.37%) 0.5511* B 71 s(19.61%)p 4.09(80.26%)d 0.01(0.14%)
64. (1.80477) BD (1) C 23 - B 72 (1.638 Å, WBI = 0.75)
        (69.63%) 0.8344* C 23 s(23.40%)p 3.27(76.60%)d 0.00(0.01%)
        (30.37%) 0.5511* B 72 s(19.61%)p 4.09(80.26%)d 0.01(0.14%)
79. (1.97672) BD (1) H 50 - B 71 (WBI = 0.97)
        (52.08%) 0.7217* H 50 s(99.97%)p 0.00(0.03%)
        (47.92%) 0.6922* B 71 s(29.81%)p 2.35(70.17%)d 0.00(0.02%)
80. (1.97257) BD (1) H 57 - B 71 (WBI = 0.96)
        (50.69%) 0.7119* H 57 s(99.96%)p 0.00(0.04%)
        (49.31%) 0.7022* B 71 s(29.22%)p 2.42(70.76%)d 0.00(0.02%)
81. (1.97672) BD (1) H 63 - B 72 (WBI = 0.97)
        (52.08%) 0.7217* H 63 s(99.97%)p 0.00(0.03%)
        (47.92%) 0.6922* B 72 s(29.81%)p 2.35(70.17%)d 0.00(0.02%)
82. (1.97257) BD (1) H 70 - B 72 (WBI = 0.96)
        (50.69%) 0.7119* H 70 s(99.96%)p 0.00(0.04%)
        (49.31%) 0.7022* B 72 s(29.22%)p 2.42(70.76%)d 0.00(0.02%)
                               s( 99.92%)p 0.00( 0.08%)
116. (0.87542) LP*(1) H 62
```

117. (0.59294) LP*(1) B 71	s(21.32%)p 3.69(78.58%)d 0.00(0.09%)
118. (0.59294) LP*(1) B 72	s(21.32%)p 3.69(78.58%)d 0.00(0.09%)

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis (hyperconjugation energy [E(2)] = kcal/mol):

79. BD (1) H 50 - B 71	/116. LP*(1) H 62	5.84
80. BD (1) H 57 - B 71	/116. LP*(1) H 62	5.85
81. BD (1) H 63 - B 72	/116. LP*(1) H 62	5.84
82. BD (1) H 70 - B 72	/116. LP*(1) H 62	5.85

Natural Population Analysis (NPA Charges)

C 16 0.53773 C 23 -0.76759 H 50 -0.03568 H 51 0.22335 H 57 -0.00569 H 58 0.27574 H 62 0.12355 H 63 -0.03568 H 70 -0.00569 B 71 -0.09914 B 72 -0.09913 N 73 -0.41815 N 74 -0.41442

Optimization results for Intermediate A

Fig. S9. Ball-and-stick representation of the optimised structure of proposed Intermediate **A** (top). Ball-and-stick depiction of the optimized structure of Intermediate **A** (bottom) with Dippgroups and protons on IPr and Ph₂CO omitted for clarity; atom numbers as they appear in the output-file. Selected computed bond lengths and Wiberg bond indices (in parentheses) are shown in the bottom view. xyz-coordinates for the optimized structure of Intermediate **A**, checked to be a minimum on the energy hyper-surface by a frequency analysis.

Optimized xyz-coordinates for Intermediate A:

С	0.86499400	-2.40963600	-1.71889900
С	-0.50182800	-2.47764500	-1.71725900
С	0.10374300	-0.87675700	-0.25216700
С	0.06840600	0.11758800	0.83840600
Н	1.61598100	-2.98233800	-2.26931100
Н	-1.19324400	-3.12412400	-2.26368700
Н	1 02267500	0.03468600	1 39377800
N	1 22690600	-1 40945100	-0.81990700
N	-0.96123800	-1 51585400	-0.82069700
Н	-0 76146000	-0 15122600	1 52092100
C	-0.10592400	1 63832900	0 24317900
0	0.051/3000	1.62057000	1 00//0800
C C	1 01052000	2 53220200	-1.09440800
C	1.01033900	2.55520200	0.90555000
C	1.60045200	3.51660700	0.08585300
C	1.41205900	2.46005300	2.25489200
C	2.564/8800	4.40219800	0.59/44200
H	1.26766000	3.54576900	-0.96379900
C	2.38564700	3.33511200	2.77012200
Н	0.95556100	1.72028700	2.93431400
С	2.96661700	4.31247300	1.94253400
Н	3.00886400	5.16956800	-0.05879500
Н	2.68869200	3.25592000	3.82745100
Н	3.72574300	5.00208600	2.34615000
С	-1.44357200	2.25578400	0.80181300
С	-2.08475100	3.20161100	-0.02432600
С	-1.99993200	2.00477500	2.07472700
С	-3.24129200	3.87542100	0.40182200
Н	-1.63582500	3.37532700	-1.01497600
С	-3.16855200	2.66301800	2.50156100
Н	-1.51915200	1.29367000	2.76761300
С	-3.79454100	3.60449900	1.66698100
H	-3.71815200	4.61877500	-0.25899000
Н	-3 58863400	2 44117100	3 49666800
Н	-4 70550600	4 12637500	2 00228900
C	2 61414200	-1 12743400	-0.48039000
C	3 20823900	-1.90323800	0 55117800
C C	3 320023700	0 15/33300	1 23581100
C C	<i>J.5299</i> 8800	1 68280600	-1.23381100
C	4.57411200	-1.08289000	0.82330300
C	4.09300000	0.01340700	-0.90942100
	5.06507000	-0.73733900	0.10082100
н	5.0659/900	-2.20434200	1.62088500
H	5.28332500	0.75945300	-1.46014/00
Н	6.37563500	-0.57822600	0.32904000
C	-2.3/198400	-1.36306400	-0.49488000
C	-3.18067200	-0.50818800	-1.29835300
C	-2.88829100	-2.14949700	0.56987600
C	-4.55554500	-0.46843000	-0.98080700
C	-4.27018400	-2.05621400	0.83559100
С	-5.09513400	-1.22698400	0.06701800
Н	-5.21819100	0.18465900	-1.56588100
Н	-4.70408400	-2.64742900	1.65713600
Н	-6.17259700	-1.16624900	0.28872400
С	2.67303200	0.67635900	-2.33794400

С	2.44454800	-2.96580100	1.34547400
С	-2.60991300	0.33783400	-2.43848900
С	-2.02596700	-3.10301400	1.40050200
Н	1.64719500	0.95047000	-1.96782200
Н	-1.63043900	0.74716300	-2.06906300
Н	-0.96228000	-2.92212700	1.13703100
Н	1.37113900	-2.89641200	1.06864700
С	2.54496600	-0.11485900	-3.66058000
С	3.41002200	1.99934600	-2.61281400
С	2.53345400	-2.72771200	2.86758100
С	2.92089900	-4.38765400	0.97383400
С	-2.16488000	-2.84737800	2.91554100
С	-2.33727100	-4.57602400	1.05334600
С	-2.37015300	-0.49130700	-3.72253600
С	-3.49652900	1.54600600	-2.79004100
Н	-1.63370300	-1.30665000	-3.58545600
Н	-3.31562500	-0.94404800	-4.09465200
Н	-1.97387200	0.16605500	-4.52446000
Н	-2.94791100	2.21193600	-3.48741600
Н	-4.43981800	1.24844900	-3.29973600
Н	-3.75471000	2.14304700	-1.89333800
Н	3.57434600	2.57994100	-1.68327100
Н	4.39259800	1.84729900	-3.11249600
Н	2.79555300	2.62592400	-3.29146500
Н	3.54289000	-0.41260500	-4.05186200
Н	1.93247100	-1.03246200	-3.56006300
Н	2.05483000	0.51649800	-4.43083200
Н	2.18258600	-1.71202400	3.14216900
Н	1.90972200	-3.46647100	3.41321900
Н	3.57363700	-2.83611300	3.23990400
Н	2.81050300	-4.58555000	-0.11226700
Н	3.99126100	-4.53300600	1.23138700
Н	2.33512400	-5.15521400	1.52224900
Н	-3.39053200	-4.83147700	1.29568100
Н	-2.18481900	-4.78329200	-0.02592600
Н	-1.68227700	-5.26357000	1.62905900
Н	-1.94579900	-1.79099600	3.17292200
Н	-3.18885500	-3.07506000	3.27901800
Н	-1.46322100	-3.49268000	3.48438600

NBO results for Intermediate A.

7. (1.97339) BD (1) C 3 - C 4 (1.476 Å, WBI = 1.07) (51.94%) 0.7207* C 3 s(42.42%)p 1.36(57.57%)d 0.00(0.02%) (48.06%) 0.6932* C 4 s(26.81%)p 2.73(73.15%)d 0.00(0.05%)
13. (1.92568) BD (1) C 4 - C 11 (1.642 Å, WBI = 0.84) (54.69%) 0.7395* C 4 s(26.85%)p 2.72(73.14%)d 0.00(0.01%) (45.31%) 0.6731* C 11 s(22.33%)p 3.48(77.63%)d 0.00(0.05%)
16. (1.98830) BD (1) C 11 - O 12 (1.339 Å, WBI = 1.15) (35.59%) 0.5966* C 11 s(25.12%)p 2.97(74.68%)d 0.01(0.20%) (64.41%) 0.8025* O 12 s(36.74%)p 1.72(63.19%)d 0.00(0.07%) Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis (hyperconjugation energy [E(2)] = kcal/mol):

157. LP (2) O 12 /759. BD*(1) C 4 - C 11 **10.71**

Natural Population Analysis (NPA Charges)

- C 3 0.56799 C 4 -0.55345 H 7 0.26480 N 8 -0.38124 N 9 -0.38066
- H 10 0.25728
- C 11 0.33006
- O 12 -0.87581

Optimization results for Intermediate B

Fig. S10. Ball-and-stick representation of the optimised structure of proposed Intermediate **B** (top). Ball-and-stick depiction of the optimized structure of Intermediate **B** (bottom) with Dippgroups and protons on IPr and Ph₂CO omitted for clarity; atom numbers as they appear in the output-file. Selected computed bond lengths and Wiberg bond indices (in parentheses) are shown in the bottom view. xyz-coordinates for the optimized structure of Intermediate **B**, checked to be a minimum on the energy hyper-surface by a frequency analysis.

Optimized xyz-coordinates for Intermediate B:

С	-1.46610200	1.64675600	-2.18322000
С	-0.12957300	1.62535400	-2.47520300
С	-0.37942200	0.80866900	-0.39645800
С	-0.16895200	0.29883300	0.98971100
Н	-2.32805200	1.97115000	-2.77127200
Н	0.41624500	1.92278700	-3.37412900
Н	-1.18626600	0.16815000	1.40335700
Ν	-1.61159300	1.15285400	-0.89371000
N	0.53621200	1.12402600	-1.36194700
Н	0 32667000	1 09207400	1 58937400
C	0 62924200	-1 07585100	1 14047200
0	0.68636100	-1 74249600	-0.07891800
Č	-0.01813600	-1 93546100	2 27015800
C	0 16029300	-3 33593500	2.2764400
C C	0.1002/500	1 38038800	3 38153400
C	0.32242100	-1.58058800	2 26221200
	-0.32242100	-4.13038300	1.24022700
П	0.04/24900	-5./6411100	1.34922700
U U	-1.1/308000	-2.19/33300	4.41939000
П	-0.85041500	-0.29310000	3.43835700
U U	-0.990/9000	-3.58825000	4.30001000
Н	-0.18248/00	-5.24203200	3.20142800
Н	-1./0025400	-1./3893200	5.2/236/00
Н	-1.3/138500	-4.23105900	5.1/601000
C	2.07760600	-0.81259800	1.64430100
C	3.16410600	-1.45656800	1.02318/00
С	2.33449900	-0.02607800	2.78979600
C	4.47049200	-1.31196400	1.52407000
Н	2.95815800	-2.07856500	0.14226100
С	3.63855300	0.12495400	3.28991000
Н	1.50247400	0.45060000	3.33335400
С	4.71674700	-0.51879200	2.65659200
Н	5.30402400	-1.82996900	1.02233600
Н	3.81018400	0.73799500	4.18966400
Н	5.73960800	-0.40989900	3.05160600
С	-2.87986100	1.17711300	-0.17289500
С	-3.07874000	2.19686900	0.80251700
С	-3.89659800	0.24186600	-0.51408300
С	-4.31083700	2.21639100	1.48684400
С	-5.10988600	0.32375600	0.20386900
С	-5.31536200	1.28398000	1.20061400
Н	-4.48792900	2.98867100	2.25144700
Н	-5.91025900	-0.39431800	-0.02938000
Н	-6.26948100	1.31448600	1.75037000
С	1.99440700	1.11481900	-1.28703500
С	2.72426400	0.17159800	-2.06078400
С	2.62905500	2.15065000	-0.54425600
C	4.13175200	0.25893300	-2.01088200
Č	4 03753000	2 16767500	-0 52214400
Č	4 78492800	1 22716800	-1 24096100
Ĥ	4 72710100	-0 46104300	-2 59288500
Н	4 55678500	2 94671000	0.05605600
Н	5 88552600	1 25972300	-1 21112400
C	-3 76435600	-0 77635000	-1 64398500
\sim	5.10455000	0.11033000	1.07570500

С	-2.06871000	3.31131300	1.08178200
С	2.07248200	-0.84998700	-2.99144200
С	1.86362300	3.29702600	0.11997200
Н	-2.68413400	-0.90696800	-1.88015500
Н	0.99301600	-0.91901200	-2.73515500
Н	0.80458100	2.98572300	0.23243200
Н	-1.11648600	3.05402800	0.57436900
С	-4.49709800	-0.26667200	-2.90812800
С	-4.29335900	-2.16859000	-1.24659300
С	-1.75444200	3.47076400	2.58311600
С	-2.55620100	4.64488400	0.47008900
С	2.38593000	3.64563700	1.52706300
С	1.86979300	4.54207900	-0.79749100
С	2.21795600	-0.38863000	-4.46152900
С	2.64498800	-2.27101300	-2.81311700
Н	1.79937500	0.62597900	-4.63360800
Н	3.28338800	-0.35741800	-4.77773200
Н	1.68512200	-1.08834300	-5.13894700
Н	2.18975500	-2.95357300	-3.55979000
Н	3.74519500	-2.31416500	-2.96297300
Н	2.39407300	-2.66981300	-1.81096300
Н	-3.78695200	-2.53800300	-0.33331200
Н	-5.39249200	-2.17689100	-1.08005300
Н	-4.08349300	-2.89337900	-2.05976400
Н	-5.58826000	-0.15282800	-2.72786200
Н	-4.11992500	0.71864700	-3.25470300
Н	-4.36564200	-0.98530600	-3.74392000
Н	-1.40861400	2.51829200	3.03395200
Н	-0.95963900	4.23032800	2.73494800
Н	-2.64282700	3.80899200	3.15648200
Н	-2.73766800	4.55166400	-0.62035900
Н	-3.50594400	4.97675200	0.94012700
Н	-1.80372200	5.44664500	0.62497000
Н	2.90576600	4.90888300	-0.95699500
Н	1.43618500	4.32085900	-1.79450000
Н	1.28204800	5.36883200	-0.34501600
Н	2.43539900	2.74899100	2.17739200
H	3.40314500	4.08900100	1.49088100
Н	1.72481600	4.39592900	2.00883400
0	-0.80920000	-1.79996700	-2.06408700
Н	-1.53296700	-2.05041700	0.06294800
С	-0.93316500	-2.88948600	-2.96016500
C	-0.99995200	-4.14855100	-2.05561300
H	-1.84153600	-2.78191400	-3.60296900
H	-0.05429500	-2.93824600	-3.65277100
H	-2.07065500	-4.42696500	-1.86199600
H	-0.51257800	-5.03484900	-2.52515600
В	-0.55577900	-2.34198900	-0.67039000
0	-0.33577800	-3.77840900	-0.87708900

NBO results for Intermediate B.

7. (1.97412) BD (1) C 3 - C 4 (1.492 Å, WBI = 1.05) (51.39%) 0.7169* C 3 s(41.84%)p 1.39(58.15%)d 0.00(0.02%) (48.61%) 0.6972* C 4 s(26.86%)p 2.72(73.10%)d 0.00(0.04%) 13. (1.94933) BD (1) C 4 - C 11 (1.597 Å, WBI = 0.92)

```
(52.61%) 0.7253* C 4 s(28.37%)p 2.52(71.61%)d 0.00(0.02%)
        (47.39%) 0.6884* C 11 s(24.72%)p 3.04(75.24%)d 0.00(0.04%)
 16. (1.98470) BD (1) C 11 - O 12 (1.391 Å, WBI = 0.96)
        (33.67%) 0.5803* C 11 s(21.44%)p 3.65(78.35%)d 0.01(0.21%)
        (66.33%) 0.8144* O 12 s( 37.52%)p 1.66( 62.42%)d 0.00( 0.05%)
112. (1.97035) BD (1) H 94 - B 101 (1.256 Å, WBI = 0.90)
        (57.81%) 0.7603* H 94 s(99.96%)p 0.00(0.04%)
        (42.19%) 0.6496* B 101 s( 36.89%)p 1.71( 63.07%)d 0.00( 0.04%)
                               s(27.34%)p 2.66(72.63%)d 0.00(0.03%)
169. (1.92437) LP (1) O 12
170. (1.87002) LP (2) O 12
                               s( 0.01%)p 1.00( 99.96%)d 0.00( 0.04%)
171. (1.65849) LP (3) O 12
                               s(35.11%)p 1.85(64.87%)d 0.00(0.03%)
175. (0.43146) LP*(1) B 101
                                s( 62.67%)p 0.59( 37.28%)d 0.00( 0.05%)
176. (0.39231) LP*(2) B 101
                                s( 0.44%)p99.99( 99.20%)d 0.83( 0.36%)
177. (0.37899) LP*(3) B 101
                                s( 0.03%)p99.99( 99.56%)d12.57( 0.41%)
```

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis (hyperconjugation energy [E(2)] = kcal/mol):

16. BD (1) C 11 - O 12	/177. LP*(3) B 101	21.04
170. LP (2) O 12	/176. LP*(2) B 101	20.05
171. LP (3) O 12	/175. LP*(1) B 101	126.92
171. LP (3) O 12	/177. LP*(3) B 101	162.51

Natural Population Analysis (NPA Charges)

C 3 0.54720 C 4 -0.53830 H 7 0.28516 N 8 -0.37124 N 9 -0.36584 H 10 0.26309 C 11 0.31861 O 12 -0.78474 H 94 -0.16388 B 101 0.90685

Optimization results for Intermediate A2

Fig. S11. Ball-and-stick representation of the optimised structure of proposed Intermediate A_2 (top). Ball-and-stick depiction of the optimized structure of Intermediate A_2 (bottom) with Dippgroups and protons on IPr omitted for clarity; atom numbers as they appear in the output-file. Selected computed bond lengths and Wiberg bond indices (in parentheses) are shown in the bottom view. xyz-coordinates for the optimized structure of Intermediate A_2 , checked to be a minimum on the energy hyper-surface by a frequency analysis.

Optimized xyz-coordinates for Intermediate A2:

С	-0.73086400	0.77087600	-2.19166600
С	0.63537700	0.79798700	-2.19845300
С	-0.02631700	0.26308300	-0.09067700
С	-0.01584900	-0.21896400	1.26196000
Н	-1.46045300	0.96220200	-2.98328500
Н	1.34836600	1.01866900	-2.99744600
Н	-0.95020900	0.02994800	1.79541500
N	-1.13369700	0.43522400	-0.89479200
N	1 06513200	0 47670200	-0 90630800
н	0.88286400	0 10909100	1 81471700
B	0.07098600	-2 02658000	1 32413800
C	-2 51290000	0 38435900	-0.45790600
C	-3 07880800	1 54918700	0.13047000
C	3 25982800	0.80640400	0.15047000
C	-3.23982800	1 /0152100	0.51965500
C	4 61100000	0.80004000	0.25072000
C	-4.01100900	-0.80094900	-0.23973000
U U	-3.19238900	0.32903100	0.32772300
п	-4.90032700	2.3/0/1100	0.9/001300
Н	-5.21505400	-1./100/800	-0.40365400
П	-0.248/9000	0.30393600	0.64020900
C	2.4513/400	0.468/4800	-0.48843300
C	3.24318400	-0.6825/500	-0./4/84800
C	2.97723600	1.63526600	0.132/5000
C	4.59833300	-0.63492900	-0.35889600
C	4.33744500	1.62039600	0.50217800
С	5.14142400	0.49791400	0.26033700
Н	5.23694900	-1.51282000	-0.54149300
Н	4.77570800	2.50800200	0.98522600
Н	6.20194300	0.50688100	0.55871800
С	-2.67193200	-2.04861700	-1.33361300
С	-2.29221300	2.84752000	0.31968400
С	2.69738000	-1.92055000	-1.45834900
С	2.14202500	2.89526800	0.36763500
Н	-1.57199200	-1.91269400	-1.38390900
Н	1.59059600	-1.84172500	-1.46061200
Н	1.08436100	2.64696500	0.14043000
Н	-1.23596100	2.64745300	0.04326100
С	-3.20212500	-2.19291700	-2.77810500
С	-2.91720800	-3.32772800	-0.50790400
С	-2.29350500	3.31890000	1.78853800
С	-2.81068800	3.95260800	-0.62687300
С	2.18994900	3.36570300	1.83566600
С	2.56569900	4.02386100	-0.59853500
C	3.17902200	-1.96042600	-2.92666200
Ċ	3.04228600	-3.22696700	-0.71592200
Н	2 89041300	-1 04759800	-3 48916500
Н	4 28529500	-2 04931500	-2 98438600
H	2.74335100	-2.83497900	-3.45421000
Н	2 55087600	-4 08452300	-1 22150200
H	4 13512100	-3 42955500	-0 71795300
Н	2 67849600	-3 18868300	0 33136800
H	-2.51183100	-3 21805000	0.51930800
Н	-3 99742100	-3 58252300	-0 44931400
	5.77712100	5.50252500	0.11/01/100

Н	-2.40363700	-4.18671500	-0.98838100
Н	-4.30326500	-2.34196300	-2.79126000
Н	-2.98134400	-1.29698400	-3.39593500
Н	-2.73811500	-3.07067600	-3.27514400
Н	-1.89861000	2.53382000	2.46468700
Н	-1.66058000	4.22341700	1.90642100
Н	-3.31458700	3.58350800	2.13556800
Н	-2.76496600	3.63393400	-1.68869400
Н	-3.86627200	4.21472000	-0.40173500
Н	-2.20497200	4.87729800	-0.52078000
Н	3.61974100	4.32790900	-0.42440000
Н	2.48066800	3.70625000	-1.65823900
Н	1.92819200	4.92241800	-0.45876800
Н	1.87236700	2.56104600	2.52941300
Н	3.21024400	3.68722700	2.13345400
Н	1.51501100	4.23412700	1.98643800
Н	0.02291700	-2.42662400	0.14652100
0	1.31194400	-2.42271700	1.99015900
0	-1.03598300	-2.46127700	2.18491400
С	0.98530300	-2.68508700	3.34293300
С	-0.48421600	-3.15258000	3.29203500
Н	-1.04399800	-2.91613100	4.22704500
Н	-0.53970200	-4.26158200	3.13981400
Н	1.07788000	-1.76030300	3.97378500
Н	1.67619500	-3.44702700	3.76945900

NBO results for Intermediate A₂.

7. (1.97629) BD (1) C 3 - C 4 (1.436 Å, WBI = 1.23) (52.30%) 0.7232* C 3 s(44.29%)p 1.26(55.70%)d 0.00(0.01%) (47.70%) 0.6906* C 4 s(26.90%)p 2.72(73.06%)d 0.00(0.05%) 8. (1.65807) BD (2) C 3 - C 4 (28.57%) 0.5345* C 3 s(0.06%)p99.99(99.89%)d 0.90(0.05%) (71.43%) 0.8452* C 4 s(14.58%)p 5.86(85.40%)d 0.00(0.02%) C4 - B11 (1.811 Å, WBI = 0.57)15. (1.97493) BD (1) B 11 - H 70 (1.244 Å, WBI = 0.92) (43.22%) 0.6574* B 11 s(34.08%)p 1.93(65.89%)d 0.00(0.03%) (56.78%) 0.7535* H 70 s(99.96%)p 0.00(0.04%) 124. (0.52565) LP*(1) B 11 s(28.61%)p 2.49(71.38%)d 0.00(0.02%) 125. (0.41111) LP*(2) B 11 s(37.11%)p 1.69(62.59%)d 0.01(0.30%) s(0.10%)p99.99(99.33%)d 5.61(0.57%) 126. (0.37415) LP*(3) B 11

Second Order Perturbation Theory Analysis of Fock Matrix in NBO Basis (hyperconjugation energy [E(2)] = kcal/mol):

8. BD (2) C 3 - C 4 /124. LP*(1) B 11 159.17

Natural Population Analysis (NPA Charges)

C 3 0.52216

C 4 -0.79774

Η	7	0.27430
Ν	8	-0.41439
Ν	9	-0.41399
Η	10	0.27039
В	11	0.78526
Η	70	-0.14033

Optimization results for Ph₂CO

Fig. S12. Ball-and-stick representation of the optimized structure of Ph_2CO . with the C-O distance and the NPA charges for C1 and O22 in parentheses, checked to be a minimum on the energy hyper-surface by a frequency analysis.

Optimization results for HBPin

Figure S13. Ball-and-stick representation of the optimised structure of HBPin (Me-Groups replaced with H), with the H-B distance and the NPA charges for H2 and B9 in parentheses, checked to be a minimum on the energy hyper-surface by a frequency analysis.

References

- 1 A. B. Pangborn, M. A. Giardello, R. H. Grubbs, R. K. Rosen and F. J. Timmers, *Organometallics*, 1996, **15**, 1518.
- 2 K. Powers, C. Hering-Junghans, R. McDonald, M. J. Ferguson and E. Rivard, *Polyhedron*, 2016, **108**, 8.
- 3 C. Hering-Junghans, P. Andreiuk, M. J. Ferguson, R. McDonald and E. Rivard, *Angew. Chem. Int. Ed.*, DOI: 10.1002/anie.201609100.
- 4 G. M. Sheldrick, *Acta Cryst.*, 2008, A64, 112.
- 5 (a) T. J. Hadlington, M. Hermann, G. Frenking and C. Jones, *J. Am. Chem. Soc.*, 2014, 136, 3028; (b) M. Arrowsmith, T. J. Hadlington, M. S. Hill and G. Kociok-Köhn, *Chem. Commun.*, 2012, 48, 4567.
- 6 C. C. Chong, H. Hirao and R. Kinjo, *Angew. Chem. Int. Ed.*, 2015, 45, 190.
- Gaussian 09, Revision E.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
- 8 E. D. Glendening and F. Weinhold, *J. Comput. Chem.*, 1998, **19**, 593; (b) E. D. Glendening and F. Weinhold, *J. Comput. Chem.*, 1998, **19**, 610.