Supporting Information

Substituent effect of phenylacetic acid coligands perturbed structures and magnetic properties observed in two triple-bridged azido-Cu(II) chain compounds with ferromagnetic ordering and slow magnetic relaxation

Xiangyu Liu,^{*a} Xiaohui Ma,^a Peipei Cen,^{a,b} Yuewei Wu,^a Chengcheng Zhang,^a Quan Shi,^{*c} Weiming Song,^a Gang Xie^b and Sanping Chen^{*b}

^a College of Chemistry and Chemical Engineering, State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, Ningxia University, Yinchuan 750021, China

^b Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, China

^c Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China

*Corresponding author

Dr. Xiangyu Liu

Tel.: +86-951-2062004

Fax: +86-951-2062860

E-mail: xiangyuliu432@126.com

*Corresponding author

Prof. Sanping Chen

Tel.: +86-29-88302604

Fax: +86-29-88302604

E-mail: sanpingchen@126.com

*Corresponding author

Dr. Quan Shi

Tel.: +86-411-84379213

Fax: +86-411-84379213

E-mail: shiquan@dicp.ac.cn

Contents

Fig. S1 PXRD patterns for compounds: (a) 1, (b) 2.

Fig. S2 $\chi_{\rm M}$ *vs T* plots for **1** (a) and **2** (b).

Table S1. Selected Bond Lengths (Å) and Bond Angles (°) for 1.

Table S2. Selected Bond Lengths (Å) and Bond Angles (°) for 2.

Table S3. The charge distributions of Cu(II) ions and coordination atoms for compounds 1 and 2.

Table S4. Atomic spin densities (in au) in all of their spin states (for def2-tzvp basis set).

Table S5. Structural and magnetic parameters for Cu(II)-azido mixed-bridged compounds.

Table S6. Structural and magnetic parameters for four triple-bridged azido-Cu(II) compounds.

Fig. S1 PXRD patterns for compounds: (a) 1, (b) 2.

Fig. S2 χ_M *vs T* plots for **1** (a) and **2** (b).

	1		
Cu(1)-O(1)	1.945(5)	O(2)-Cu(1)-O(1)	179.0(3)
Cu(1)-O(2)#1	1.942(5)	O(2)#1-Cu(1)-N(1)#1	91.4(2)
Cu(1)-O(3)	2.439(6)	O(1)-Cu(1)-N(1)#1	89.5(2)
Cu(1)-N(1)	2.007(8)	O(2)-Cu(1)-N(1)	89.1(2)
Cu(1)-N(1)#1	2.001(7)	O(1)-Cu(1)-N(1)	90.0(2)
N(1)-N(2)	1.198(6)	N(1)#1-Cu(1)-N(1)	176.3(3)
N(2)-N(3)	1.125(7)	C(1)-O(1)-Cu(1)	131.1(5)
O(3)-C(9)	1.433(9)	N(2)-N(1)-Cu(1)	122.6(7)
C(1)-O(1)	1.246(11)	C(9)-O(4)-Cu(1)	118.2(6)
C(1)-O(2)	1.266(11)	O(3)-Cu(1)-N(1)	99.8(2)
C(8)-F(1)	1.342(2)	N(3)-N(2)-N(1)	178.5(8)
#1 1-x,-1/2+y,1-z			

Table S1. Selected bond lengths [Å] and angles [°] for compound 1.

Table S2. Selected bond lengths [Å] and angles $[\circ]$ for compound 2.

2					
Cu(1)-O(1)	1.935(6)	O(1)-Cu(1)-O(2)#1	179.0(3)		
Cu(1)-O(2)	1.947(6)	O(1)-Cu(1)-N(1)#1	90.0(2)		
Cu(1)-O(3)	2.427(7)	O(2)#1-Cu(1)-N(1)#1	90.4(3)		
Cu(1)-N(1)	2.023(10)	O(1)-Cu(1)-N(1)	90.9(2)		
Cu(1)-N(1)#1	1.975(10)	O(2)#1-Cu(1)-N(1)	88.8(2)		
Cu(1)-O(3)#1	2.469(7)	N(1)#1-Cu(1)-N(1)	178.6(2)		
N(1)-N(2)	1.206(6)	C(8)-O(1)-Cu(1)	127.8(5)		
N(2)-N(3)	1.131(7)	N(2)-N(1)-Cu(1)#2	122.7(8)		
F(1)-C(1)	1.36(3)	N(2)-N(1)-Cu(1)	119.0(9)		
O(3)-C(9)	1.436(7)	Cu(1)#2-N(1)-Cu(1)	104.8(2)		
C(8)-O(1)	1.279(13)	N(3)-N(2)-N(1)	178.0(9)		
#1 1-x,-1/2+y,1-z	#2 1-x,1/2+y,1-z				

Table S3. The charge distributions of Cu(II) ions and coordination atoms for compounds 1 and 2.

	1 (Natural charge c/m ³)	2 (Natural charge c/m ³)	
Cu1	1.30862	1.30011	
Cu1A	1.31061	1.33218	
O1 (carboxylates)	-0.73609	-0.73687	
O1A (carboxylates)	-0.73067	-0.74645	
N1	-0.71713	-0.74951	
O2 (ethanol)	-0.73942	-0.77514	

Atoms	1	2
Cu1	0.55850	0.55738
Cu1A	0.55945	0.57177
O1 (carboxylates)	0.07784	0.07921
O1A (carboxylates)	0.07571	0.08445
N1	0.07485	0.08472
O2 (ethanol)	0.00026	0.00004

Table S4. Atomic spin densities (in au) for compounds 1 and 2 (for def2-tzvp basis set).

Table S5. Structural and magnetic parameters for Cu(II)-azido mixed-bridged compounds.

Year	Unit	Formula	Cu-N-Cu(°)	CuCu(Å) (intrachain)	$J^a(\mathrm{cm}^{-1})$	Ref.
1007	2Cu	$[Cu_2(N_3)_2(NO_3)_2(L^1)_2]_n$	119.5	3.44	26	15b
1997 1Cu		$\{[Cu(Hpht)(N_3)]H_2O\}_n$	111.9	3.28	75	15a
	1Cu	[Cu(INO)(N ₃)(H ₂ O) _{0.5}] _n	106.6	3.22	80	33 <i>c</i>
2006	1Cu	[Cu(NNO)(N ₃)(H ₂ O) _{0.5}] _n	124.3	3.52	48	33 <i>c</i>
	1.5Cu	$[Cu_{1.5}(N_3)_2(isonic)]_n$	106.7	3.20	80	34 <i>a</i>
	3Cu	$[Cu_3((R)-phea)_2(N_3)_6]_n$	101.0	3.04	15.27	241
	3Cu	$[Cu_3((S)-phea)_2(N_3)_6]_n$	101.8			34b
2007	1Cu	[Cu(N ₃)(nic)] _n	113.6	3.35	39.1	34 <i>c</i>
	1.5Cu	$[Cu_{1.5}(hnta)(N_3)_2(H_2O)]_n$	103.2	3.12	89	29 <i>b</i>
	3Cu	$[Cu_3(hnta)_4(N_3)_2(H_2O)_3]_n$	116.2	3.39	69.7	29 <i>b</i>
2008	1Cu	[Cu(N ₃)(tp)(CH ₃ OH)] _n	105.5	3.19	63	34 <i>d</i>
	2Cu	[Cu ₂ (4-pya) ₂ (N ₃) ₂ (DMF)] _n	102.1	-	145	33 <i>b</i>
10	1Cu	[Cu(benzoate)(N ₃)] _n	126.8	3.54	33.90	18 <i>a</i>
2009	1Cu	$[Cu(L^2)(N_3)]_n$	108.2	3.23	93.10	18 <i>a</i>
	1Cu	[Cu(1-naphthoate)(N ₃)] _n	116.8	3.41	65.63	18 <i>a</i>
	1Cu	$[Cu(N_3)(p-CPA)]_n$	107.0	3.18	68.82	35 <i>a</i>
2010	1Cu	[Cu(2-Clnic)(N ₃)(CH ₃ OH)] _n	110.3	3.29	81.22	35b
2010	3Cu	[Cu ₃ (pyz) ₂ (N ₃) ₆] _n	100.5	3.09	118.8	35 <i>c</i>

	1Cu	$[Cu(mptz)(N_3)_2]_n$	103.3	3.15	65.4	35d
2011	1Cu	$[Cu(4,3-pybz)(N_3)]_n$	109.4	3.25	63.9	18 <i>b</i>
	2Cu	$[Cu_2(4,4\text{-pybz})_3(N_3)]_n \cdot 3nH_2O$	101.1	3.08	93.6	18 <i>b</i>
	4Cu	$[Cu_4(N_3)_8(Me\text{-}hmpz)_2]_n$	101.0	3.11	$J_1=40.57$ $J_2=28.47$	35e
2012	4Cu	$[Cu_4(N_3)_8(men)_2]_n$	102.2	3.40	J ₁ =57.97 J ₂ =-14.03	35e
	5Cu	$[Cu_5(N_3)_{10}(N,N-dmen)_2]_n$	101.6	3.40	$J_1 = -494.99$ $J_2 = 88.60$	35e
	5Cu	$[Cu_5(N_3)_{10}(N,N'-dmen)_5]_n$	102.2	3.50	-	35e
	4Cu	$[Cu_4(N_3)_8(L^3)_2]_n$	102.9 137.1	3.12 4.13	$J_1 = -0.70$ $J_2 = 64.9$	35f
2013	4Cu	$[Cu_4(N_3)_6(L^4)_2(H_2O)_2]$	93.4 102.1 108.9	3.10 3.22	$J_1 = -81.0$ $J_2 = 112.4$	35f
	4Cu	$[Cu_4(N_3)_6(L^5)_2]_n$	91.8 102.2 107.3	3.18 3.09 3.18	J ₁ =-77.9 J ₂ =129.9	35f
	1Cu	[Cu(4-fba)(N ₃)(C ₂ H ₅ OH)]	105.2	3.160	36.2	9f
2014	1Cu	[Cu(o-npa)(N ₃)(H ₂ O)]n	110.3	3.30	35.44	9g
2014	1Cu	[Cu(p-npa)(N ₃)]n	120.4	3.39	52.25	9g
	1Cu	[Cu(p-mpa)(N ₃)]n	122.4	3.46	-	9g
2015	1Cu	[Cu(L)(N ₃)] ₂	89.8	3.199	1.07	36 <i>a</i>
2016	1Cu	$[(CuN_3(OH_2))_2(adp)]_n$	108.09	3.248	38.4	36 <i>b</i>
2017	1Cu	[Cu(2-fba)(N ₃)(CH ₃ OH)] _n	106.54	3.206	63.54	37
2017	1Cu	[Cu(2,6-dfba)(N ₃)(CH ₃ OH)] _n	110.08	3.261	96.29	37
	1Cu	$[Cu(o-fpa)(N_3)(C_2H_5OH)]_n$	106.8	3.218	87.08	This work
	1Cu	$[Cu(p-fpa)(N_3)(C_2H_5OH)]_n$	104.8	3.168	66.05	This work

 J^a : intrachain coupling.

 $L1 = Me_3NCH_2CO_2$, Hpht = hydrogen phthalate, INO = isonicotinate *N*-oxide, NNO = nicotinate *N*-oxide, isonic = isonicotinate, phea = 1-phenylethylamine, nic = nicotinate, hnta = 6-hydroxynicotinate, tp = terephthalate, 4-Hpya

= 4-pyridylacrylic acid, L^2 = 2-methyl-benzoate, *p*-CPAH = *p*-cyanophenoxyacetic acid, 2-Clnic = 2chloronicotinate, pyz = pyrazine, mptz = *N*-methyl-4-pyridinium tetrazolate, 4,3-pybz = 4-(3-pyridyl)benzoate, 4,4-pybz = 4-(4-pyridyl)benzoate, Me-hmpz = 1-methylhomopiperazine, men = *N*-methylethylenediamine, *N*,*N*dmen = *N*,*N*-dimethylethylenediamine, *N*,*N*⁻dmen = *N*,*N*⁻dimethylethylenediamine, L³ is the imine resulting from the condensation of pyridine-2-carboxaldehyde with *N*-methylethylenediamine, HL⁴ and HL⁵ are the condensation products of 2-hydroxy-3-methoxybenzaldehyde with *N*,*N*-ditethylethylenediamine and *N*ethylethylenediamine respectively, 4-Hfba = 4-fluorobenzoic acid, *o*-Hfpa = *o*-fluorophenylacetic acid, *p*-Hfpa = *p*-fluorophenylacetic acid, L = N-benzyl ethylenediamine, adp = adipic acid, 2-Hfba = 2-fluorobenzoic acid, 2,6-Hdfba = 2,6-difluorobenzoic acid, *o*-Hnpa = *o*-nitrophenylacetic acid, *p*-Hnpa = *p*-nitrophenylacetic acid, and *p*-Hmpa = *p*-methylphenylacetic acid.

All of the *J* values were quoted using the Hamiltonian $H = -J \sum S_i \cdot S_{i+1}$.

Formula	Cu-N-Cu(°)	Cu-Cu (Å) (intrachain)	Hydrogen-bonding (Å) (interchain)	CuCu (Å) (interchain)	$J^a(\text{cm}^{-1})$	Ref.
[Cu(o-fpa)(N ₃)(C ₂ H ₅ OH)] _n	106.8	3.218	2.901	7.615	87.08	This work
[Cu(p-fpa)(N ₃)(C ₂ H ₅ OH)] _n	104.8	3.168	2.902	7.562	66.05	This work
[Cu(2-fba)(N ₃)(CH ₃ OH)] _n	106.6	3.206	2.861	7.512	63.54	37
[Cu(2,6-dfba)(N ₃)(CH ₃ OH)] _n	110.3	3.266	2.927	7.784	96.29	37

Table S6. Structural and magnetic parameters for four triple-bridged azido-Cu(II) compounds.