Electronic Supplementary Information (ESI)

Liquid Phase Oxidation of Alkylaromatics to Aromatic Ketones with Molecular Oxygen over Mn-based Metal-organic Framework

Yasutaka Kuwahara,^{a,b} Yukihiro Yoshimura^a and Hiromi Yamashita^{a,b*}

^{*a*} Division of Materials and Manufacturing Science, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan

^b Unit of Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan

* Tel: (+81) 6-6879-7460, Fax: (+81) 6-6105-5029 E-mail: yamashita@mat.eng.osaka-u.ac.jp

Procedures for adsorption test

An adsorption experiment using Mn-MOF-74 as an adsorbent and ethylbenzene/diphenylmethane as smaller/bigger model substrates was carried out in order to evaluate the accessibility of substrates to the interior pores of Mn-MOF-74. The adsorption experiment was carried out according to the following procedures: In a glass vessel, substrates (0.3 mmol), *m*-dichlorobenzene as a solvent (5 mL) and the Mn-MOF-74 as an adsorbent (50 mg) were placed. The mixture was stirred at room temperature with magnetic stirring. After 24 h of adsorption, the mixture was withdrawn, filtered and analyzed by using a gas chromatograph (Shimadzu GC-14B) with a flame ionization detector equipped with a capillary column (Zebron ZB-FFAP; 0.32 mm×50 m). The amounts of substrates adsorbed were determined by using biphenyl as an internal standard.

Fig. S1 (A) Mn K-edge XANES spectra and (B) their first derivatives of Mn-MOF-74, used Mn-MOF-74 and $Mn_3(PhCO_2)_6Cl_3$ together with some reference Mn oxide/hydroxide compounds.

Fig. S2 Correlation between the energy shift and oxidation state of Mn atoms in the experimental samples and reference Mn oxide/hydroxide compounds.

Fig. S3 Reusability tests of Mn-MOF-74 catalyst in the liquid-phase oxidation of ethylbenzene with molecular O_2 . Reaction conditions: catalyst (Mn 0.03 mmol), ethylbenzene (40 mmol), O_2 flow (5 mL/min), 135 °C, 9 h.

Fig. S4 GC-MS spectra of the reaction mixtures obtained in the liquid-phase oxidation of ethylbenzene (Reaction conditions: catalyst (Mn 0.03 mmol), substrate (40 mmol), O_2 flow (5 mL/min), 135 °C, 9 h). The spectra shown below are the MS fragment charts corresponding to each GC peak.

Fig. S5 GC-MS spectra of the reaction mixtures obtained in the liquid-phase oxidation of tetralin (Reaction conditions: catalyst (Mn 0.03 mmol), substrate (5 mmol), solvent (*m*-dichlorobenzene, 5 mL), O_2 flow (5 mL/min), 135 °C, 9 h). The spectra shown below are the MS fragment charts corresponding to each GC peak.