Supporting information

A dual-emission probe to detect moisture and water in organics based on green-Tb³⁺ post-coordinated metal–organic frameworks with red-carbon dots

Jing-Xing Wu and Bing Yan*

China-Australia Joint Laboratory for Functional Molecules and Ordered Matters, School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China.

E-mail: byan@tongji.edu.cn.

Fig. S1 Hydrothermal synthetic route using 1,4-diaminobenzene and ethanol to from p-CDs.

Fig.S2 TEM image of p-CDs

Fig. S3 FTIR spectra of p-CDs.

Fig. S4 PXRD patterns of original MOF, p-CDs/MOF and Tb³⁺@p-CDs/MOF

Fig. S5 FTIR spectra of original MOF, p-CDs/MOF and Tb³⁺@p-CDs/MOF.

Fig. S6 SEM of (a) original MOF and (b) p-CDs/MOF.

Fig. S7 N₂ adsorption and desorption isotherms of original MOF, p-CDs/MOF and Tb³⁺@p-CDs/MOF. The BET surface areas of original MOF, p-CDs/MOF and Tb³⁺@p-CDs/MOF are calculated to be 650, 536 and 355 m²/g.

Fig. S8 (a) Room temperature excitation (blue line), emission spectra (red line) of p-CDs in ethanol solution and emission spectra (black line) of p-CDs particles; (b) the corresponding photographs of dried p-CDs particles (top) and p-CDs in ethanol solution (bottom) under UV light irradiation at 365 nm.

Fig. S9 (a) The excitation (black) and emission spectra (red) of p-CDs/MOF in ethanol (monitored and excited at 605 nm and 360 nm, respectively); photoluminescence colour with 365 nm UV excitations using a Xe lamp as the excitation source; CIE chromaticity diagram of p-CDs/MOF excited at 360 nm (X= 0.61, Y=0.34); (b) The excitation (black) and emission spectra (red) of Tb³⁺@MOF (monitored and excited at 545 nm and 360 nm, respectively); photoluminescence colour with 360 nm UV excitations using a Xe lamp as the excitation source; CIE chromaticity diagram of Tb³⁺@MOF excited at 360 nm (X= 0.61, Y=0.34); (b) The excitation (black) and emission spectra (red) of Tb³⁺@MOF (monitored and excited at 545 nm and 360 nm, respectively); photoluminescence colour with 360 nm UV excitations using a Xe lamp as the excitation source; CIE chromaticity diagram of Tb³⁺@MOF excited at 360 nm (X= 0.31, Y=0.55).

Fig. S10 (a) Photographs of fresh p-CDs in H_2O or EtOH; (b) p-CDs in H_2O or EtOH after three days.

Fig. S11 (a) Stability of PL intensity of $Tb^{3+}@p-CDs/MOF$ after immersing in ethanol solution for 7 days, (b) changes in the corresponding values of I_{545nm} and I_{605nm} and ratio of I_{545nm}/I_{605nm} .

(b) CIE chromaticity diagram	
Water Content %	(X, Y)
0	(0.55, 0.43)
2	(0.54, 0.44)
5	(0.51, 0.45)
10	(0.49, 0.47)
15	(0.46, 0.48)
20	(0.43, 0.50)
30	(0.41, 0.51)
40	(0.35, 0.55)
50	(0.34, 0.56)
70	(0.33, 0.56)
100	(0.32, 0.56)

Fig. S12 (a) CIE chromaticity diagram of Tb³⁺@p-CDs/MOF scattered in the ethanol solution containing different water content excited at 360 nm. (b) Related values of CIE chromaticity diagram.

Fig. S13 PXRD patterns of Tb³⁺@p-CDs/MOF in ethanol upon addition of different amounts of water (original one: 0, 10%, 20%, 50%, 70% and 100%).

Fig. S14 (a) PL spectra (λ_{ex} = 360 nm) of Tb³⁺@p-CDs/MOF dispersed in DMF with various water contents under; (b) corresponding visual PL photos shot under 365 UV light; (c) linear relationship of I_{545 nm}/I_{605 nm} versus the water content in DMF.

Fig. S15 (a) PL spectra (λ_{ex} = 360 nm) of Tb³⁺@p-CDs/MOF dispersed in cyclopropane with various water contents under; (b) corresponding visual PL photos shot under 365 UV light; (c) linear relationship of I_{545 nm}/I_{605 nm} versus the water content in cyclopropane.

Fig. S16 Humidity detecting device, including a closed glass chambers (1 L) containing test plates with Tb³⁺@p-CDs/MOF and aqueous solutions (250 mL) of MgCl₂, Mg(NO₃)₂, NaCl or KCl.