Electronic Supplementary Information

Syntheses of metallo-pseudorotaxanes, rotaxane and postsynthetically functionalized rotaxane: a comprehensive spectroscopic study and dynamic properties

Saikat Santra^a, Somnath Bej^{a#}, Mandira Nandi^{a#}, Partha Mondal^b and Pradyut Ghosh^{a*}

Contents

1. Characterization data of pseudorotaxanes and rotaxane precursors:	Fig. 1S - 13S
2. Characterization data of rotaxane:	Fig. 14S - 19S
3. Characterization data of post-synthetically functionalized rotaxane:	Fig. 20S - 32S
4. Crystallographic data:	Table 1S-2S

Scheme 1S. Synthetic route of metallo macrocyclic complexes (using perchlorate counter anion)

Scheme 1S a. Synthetic route of L3

Fig. 1 (a) ESI-MS spectrum of MC- Co^{II} complex, (b) inset picture shows exact matching of simulated (black) and experimental isotopic distribution pattern (green)

Fig. 2S ESI-MS of L3

Fig. 3S¹H-NMR of L3 in DMSO- d_6 at 298K (500MHz)

Fig. 3S (a) Expanded ¹H-NMR of L3 in DMSO- d_6 at 298K (500MHz)

Fig. 3S (b) Expanded ¹H-NMR of L3 in DMSO- d_6 at 298K (500MHz)

Fig. 4S¹³C-NMR spectrum of L3 in DMSO-d₆ at 298K (500MHz)

Fig.5S Absorption titration profile of MC-Ni^{II} (6 x 10^{-4} M) complex and L2 (8 x 10^{-5} M)

Fig. 6S(a). Absorption spectra of $L1@MC-Co^{II}$ (yellow) and L1 (red); (b) $L2@MC-Co^{II}$ (yellow) and L2 (red); (c) $L3@MC-Co^{II}$ (red) and L3 (black); (d) $L4@MC-Co^{II}$ (blue) and L4 (red)

Fig. 6S (e). Absorption spectra of L5@MC-Co^{II}

Fig. 7S [A] ESI-MS spectrum of (a) $L1@[MC.Ni.ClO_4^-]^+$;(b) simulated (green) and experimental (brown) distribution pattern of desired peak

Fig. 7S. [B] ESI-MS spectrum of $L2@[MC.Ni.ClO_4^-]^+$; inset picture shows simulated (red) and experimental (blue) distribution pattern of desired peak

Fig. 7S [C] ESI-MS spectrum of $L3@[MC.Ni.ClO_4^-]^+$

Fig. 7S [D] ESI-MS spectrum of $L4@[MC.Ni.ClO_4]^+$

Fig. 8S ESI-MS spectrum of [a] $L1@[MC.Co.ClO_4]^+$ and (b) $L2@[MC.Co.ClO_4]^+$

Fig. 8S [c] ESI-MS spectrum of $L3@[MC.Co.ClO_4]^+$

Fig. 8S [d] ESI-MS spectrum of $L4@[MC.Co.]^{+2}$

Fig. 8S [e] ESI-MS spectrum of $L5@[MC.Co.ClO_4]^+$

Fig. 9S (a) ESI-MS (+ve) of $L3@[MC.Cu.ClO_4]^+$

Fig. 9S (b) ESI-MS (+ve) of $L4@[MC.Cu.ClO_4]^+$

Fig. 10S (a) ESI-MS (+ve) of $L1@[MC.Zn.ClO_4]^+$

Fig. 10S (b) ESI-MS (+ve) of $L2@[MC.Zn.ClO_4]^+$

Fig. 10S (*c*) *ESI-MS* (+*ve*) of *L4*@[*MC*.*Zn*.*ClO*₄⁻]⁺

Fig. 10S (c) ESI-MS (+ve) of $L5@[MC.Zn.ClO_4]^+$

Fig.11S Electronic spectra for titration experiment among bidentate chelating ligand as axles, (a) $L3(7.8 \times 10^{-3} \text{ M})$, (c) $L4(8.2 \times 10^{-3} \text{ M})$, and $MC-Cu^{II}(1.0 \times 10^{-3} \text{ M})$ complex, (b) and (d) indicate equivalent plot between $MC-Cu^{II}$ complex and respective axles

Fig. 12S EPR spectra of (a) L3 [$g_{\parallel} = 2.1871$, $g_{\perp} = 2.02689$] and (b) L4 [$g_{\parallel} = 2.2076$, $g_{\perp} = 2.02573$] threaded Cu^{II} templated pseudorotaxane

Fig. 13S [A]: (a) Geometry around the metal centre of L3@MC-Cu^{II};(b) ORTEP dagram of L3@MC-Cu^{II}

Fig. 13S [B]: ORTEP dagram of (a) L1@MC-Zn^{II};(c) L2@MC-Cu^{II} and geometry around the metal centre (b), (d). H-atoms are omitted for clarity

Fig. 14S a ¹H-NMR spectrum of metal free [2]rotaxane, ROT in CDCl₃

Fig. 15S Expanded ¹H-NMR spectrum of metal free [2] rotaxane, ROT in CDCl₃

Fig. 16S ¹³C-NMR (75 MHz) spectrum of **ROT** in DMSO- d_6 at 298K

Fig. 17S ¹H-¹H COSY NMR spectrum of metal free [2]rotaxane, *ROT* in CDCl₃ at 298K in 400MHz

Fig. 18S ${}^{1}H{}^{-1}H{}^{-1}H{}^{-1}NOESY NMR$ spectrum of metal free [2]rotaxane, **ROT** in CDCl₃ at 298 K

in 500 MHz

Fig. 19S ¹*H*-¹*H ROESY NMR spectrum of metal free* [2]*rotaxane, ROT in CDCl*₃ *at* 298*K in* 500 *MHz*

Fig. 20S DOSY-NMR spectrum of ROT in CDCl₃ at 298K (500 MHz)

Fig. 21S ESI-MS (+ve mode) of *AcROT*, inset picture shows that the isotopic distribution pattern of *AcROT* (brown, bold) matches well with simulated data (black)

Fig. 22S¹H-NMR spectrum of AcROT in CDCl₃ at 298K in 500 MHz

Fig. 23S¹H-NMR spectrum of AcROT in DMSO-d₆ at 298K in 300 MHz

Fig. 24S a ¹³C-NMR spectrum of AcROT in CDCl₃ (75MHz) at 298K

Fig. 24S b Expanded ¹³C-NMR spectrum of AcROT in CDCl₃ (75MHz) at 298K

Fig. 24S c Expanded ¹³C-NMR spectrum of AcROT in CDCl₃ (75MHz) at 298K

Fig. 25S a. DEPT-135 spectrum of AcROT in CDCl₃

Fig. 25S b Expanded DEPT-135 spectrum of AcROT in CDCl₃

Fig. 25S c. Expanded DEPT-135 spectrum of AcROT in CDCl₃

Fig. 26S¹H-¹H COSY NMR spectrum of AcROT at 298K in CDCl₃ at 300MHz

Fig. 27S¹H-¹H COSY NMR spectrum of AcROT at 298K in DMSO-d₆ at 400MHz

Fig. 28S.a. ¹H-¹H-ROESY NMR spectrum of AcROT at 298K in CDCl₃ at 500MHz

Fig. 28S.b¹H-¹H-ROESY NMR spectrum of AcROT at 298K in CDCl₃ at 500MHz

Fig. 29S¹H-¹H ROESY NMR spectrum of AcROT at 298K in DMSO-d₆ at 300MHz

Fig. 30S DOSY NMR spectrum of AcROT at 298K in CDCl₃ (500 MHz)

Fig. 31S a HSQC NMR spectrum of AcROT at 298K in CDCl₃ (300 MHz)

Fig. 31A b. HSQC NMR spectrum of AcROT at 298K in CDCl₃ (300 MHz)

Fig. 32S. ¹H-NMR of AcMC in DMSO-d₆ recorded in 300 MHz at 298K

Fig. 32S¹H-NMR of AcMC in DMSO-d₆ recorded in 300 MHz at 380K

Chart 1S Chemical diagram of stopper (STP, Top) and metallated rotaxane (bottom)

Fig.34S (i) ¹H-NMR of AcROT; (ii) AcROT + Li⁺; (iii) AcROT + Li⁺ + 12-crown-4 in 9:1 CDCl₃:CD₃CN solvent mixture

Fig. 35S ESI-MS (+ve mode) of AcROT in presence of Li^+

Fig.36S NOESY-NMR spectrum of AcROT in presence of 1.0 eqv of Li+

Fig.37S ORTEP diagrams of ternary complexes having ellipsoids of 50% probability level. H-atoms, solvent molecules and counter anions are omitted for clarity: (i) MC_NiII_L1, (ii) MC_CuII_L3, (iii) MC_ZnII_L1, (iv)MC_ZnII_L2.

Table 1S Crystallographic Information Table for MC_NiII_L1

Compound reference	MC NHI I 1
Chemical formula	$C_{42}H_{57}CI_2N_7N_1O_{16}$
Formula Mass	1045.55
Crystal system	
	Orthorhombic
~/Å	12 4722(9)
	13.4735(8)
b/A	18.3502(10)
c/Å	19.0508(11)
a/°	90
$\beta/^{\circ}$	90
$\gamma^{\prime \circ}$	90
Unit cell volume/Å ³	4710.1(5)
Temperature/K	150(2)
Space group	P212121
No. of formula units per unit cell, Z	4
No. of reflections measured	37485
No. of independent reflections	4883
R _{int}	0.0983
Final R_I values $(I > 2\sigma(I))$	0.0774
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1962
Final R_I values (all data)	0.0992
Final $wR(F^2)$ values (all data)	0.2168
CCDC number	
	1562608

Table 2S Crystallographic Information Table for MC_CuII_L3

Common durfammer	MC C-II I 2
Compound reference	MC_CUII_LS
Chemical formula	$C_{48}H_{63}Cl_2CuN_9O_{16}$
Formula Mass	1156.51
Crystal system	
	Triclinic
a/Å	11.4266(13)
b/Å	13.2646(15)
c/Å	18.043(2)
$\alpha / ^{\circ}$	95.793(3)
$\beta^{\prime \circ}$	100.492(3)
$\gamma/^{\circ}$	100.063(3)
Unit cell volume/Å ³	2622.6(5)
Temperature/K	150(2)
Space group	Pt
No. of formula units per unit cell, Z	2
No. of reflections measured	27801
No. of independent reflections	10602
R _{int}	0.0449
Final R_I values $(I > 2\sigma(I))$	0.0534
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1379
Final R_1 values (all data)	0.0868
Final $wR(F^2)$ values (all data)	0.1579
CCDC number	
	1562607

Table 3S Crystallographic Information Table for MC_ZnII_L1

Compound reference	MC 7nII 11
Chapter of the second	C H CLN O Z
	C_{80} H ₁₀₀ Cl ₄ N ₁₄ O ₂₉ Zn ₂
Formula Mass	1994.19
Crystal system	
	Monoclinic
a/Å	18.714(5)
b/Å	12.905(5)
$c/\text{\AA}$	20.081(5)
$\alpha /^{\circ}$	90
$\beta/^{\circ}$	108.561(5)
γ/°	90
Unit cell volume/Å ³	4597(2)
Temperature/K	150(2)
Space group	P21/n
No. of formula units per unit cell, Z	2
No. of reflections measured	45297
No. of independent reflections	8571
R _{int}	0.1669
Final R_I values $(I > 2\sigma(I))$	0.0648
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1902
Final R_1 values (all data)	0.0878
Final $wR(F^2)$ values (all data)	0.2086
CCDC number	
	1562609

Compound reference	MC_ZnII_L2
Chemical formula	$C_{42}H_{55}Cl_2N_7O_{15}Zn$
Formula Mass	1034.20
Crystal system	
	Orthorhombic
a/Å	15.565(3)
b/Å	19.148(3)
c/Å	31.764(5)
$\alpha/^{\circ}$	90
β^{\prime}	90
$\gamma/^{\circ}$	90
Unit cell volume/Å ³	9467(3)
Temperature/K	150(2)
Space group	Pbca
No. of formula units per unit cell, Z	8
No. of reflections measured	109156
No. of independent reflections	8443
R _{int}	0.0967
Final R_I values $(I > 2\sigma(I))$	0.0643
Final $wR(F^2)$ values $(I > 2\sigma(I))$	0.1769
Final R_1 values (all data)	0.0937
Final $wR(F^2)$ values (all data)	0.2001
CCDC number	
	1562610

Table 4S Crystallographic Information Table for MC_ZnII_L2

For all the ternary complexes, the non-hydrogen atoms are refined with anisotropic displacement co-efficient (except some case which has been discussed later) and all hydrogen atoms were tried to fix geometrically at idealized positions. However, for most of the solvent molecules we are unsuccessful to fix H-atoms geometrically in proper position. We have tried our best to fix the H-atoms on the solvent molecules via SHELXL as well as OLEX2 software but unable to do so. Since H-atoms of the solvent molecules cannot be located at the difference Fourier map, we are unable to add them properly in most of the cases.

For the crystal structure of Ni^{II} templated ternary complex, two methanol and one water solvent molecules are present. For methanol, we are not successful to place H-atoms on the methoxy groups. The moiety formula has written in calculated Check CIF as " C_{40} H₄₇ N₇ Ni O_5 , 2(ClO₄), 2(CH₃O), H₂O. The CH₃O, mentioned in the formula is not representing the methoxide ions. Instead they are the methanol solvents and the charge of metal ion is +2 which is counter balanced by two perchlorate anions. Likewise, for Cu^{II} template structure, two water molecules are present in the crystal lattice. In this case also we are unable to fix H-atoms on two water molecules and thus it remains apparently as two oxide ions. But actually these are not oxides. Although, the moiety formula is written as " $C_{48}H_{59}$ Cu N₉ O₆, 2(ClO₄), 2(O)" in the in calculated Check CIF, the naked Oatoms written within the parenthesis does not indicate the presence of two oxide ions. These are actually two water molecules. The metal ion is present in the +2 oxidation state, where the two perchlorate counter anions are balancing the di positive charge.

L1 threaded Zn^{II} templated pseudorotaxane crystal structure shows that it has three solvent water molecules. Two of them are disordered in two positions having occupancy of 0.33458 and 0.66542. The disordered atoms are isotropically refined using the FVAR command of the SHELXTL program.

We are unsuccessful to fix the H-atoms geometrically with the solvent molecules of L1 threaded Zn^{II} templated pseudorotaxane after repeated effort. The moiety formula written in in calculated Check CIF as in Table 3S, as $2(C_{40} H_{45} N_7 O_4 Zn), 2(O_{0.84}), 4(ClO_4), 3.33(O)$. The naked O-atoms written within the parenthesis do not indicate the presence of oxide ions. These are indeed solvent water molecules. Metal ion present here is in +2 oxidation state where two perchlorate counter anions are balancing the di-positive charges.

Similarly, L2 threaded ternary complex of Zn^{II} consist of three water molecules. Here also we are unable to fix H-atoms properly. The moiety formula is written in crystallographic information table (Table 4S) and in CIF file as C_{42} H_{49} N_7O_4 Zn, 2(ClO₄), 3(O). These naked O-atoms are not the oxide ions. These are solvent water molecules. The anchoring metal ion is doubly charged which is balanced by two perchlorate counter anions.

However, according to reviewer's suggestion we have tried to adjust the moiety formula and sum formula in the CIF and re-refined the structure and the results obtained are tabulated in Table 1S - 4S.

The above discussion section is mentioned in the main text. However, for clarity and better understanding, we have again placed it here and the section is exactly same as in the main text.