Supporting Information

Control of Aurophilic Interaction: Conformations and Electron Structures of One-Dimensional

Supramolecular Architectures

Hiroaki Imoto,^[a] Shintaro Nishiyama,^[a] Takashi Yumura,^[b] Seiji Watase,^[c] Kimihiro Matsukawa,^[a,c] Kensuke Naka^{[a]*}

^[a] Faculty of Molecular Chemistry and Engineering, Graduate School of Science and Technology, Kyoto Institute of Technology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

^[b] Faculty of Materials Science and Engineering, Graduate School of Science and Technology, Kyoto Institute of Tech-nology, Goshokaido-cho, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.

^[c] Osaka Municipal Technical Research Institute, 1-6-50 Morinomiya, Joto-ku, Osaka 536-8553, Japan.

Contents:

- 1. NMR spectra
- 2. Crystallographic data
- 3. Absorption spectra
- 4. DFT calculation

1. NMR spectra

Figure S1. ¹H-NMR spectra (400 MHz) of 1 and 1–AuCl in CDCl₃.

2. Crystallographic data

	1–AuCl
Crystal data	
Empirical Formula	$C_{14}H_{18}As_2Au_2Cl_2O_8$
Formula Weight	928.97
Crystal Dimension, mm ³	$0.150\times0.100\times0.100$
Crystal System	triclinic
Space Group	P-1
a, Å	9.7958(3)
b, Å	10.6346(4)
c, Å	13.0215(4)
a, deg	79.1560(12)
β, deg	74.7870(9)
γ, deg	60.7176(10)
Volume, Å ³	1138.83(7)
D _{calcd} , g cm ⁻³	2.709
Ζ	2
F(000)	848.00
Data Collection	
Temperature, deg	23.0
2θmax, deg	54.9
Tmin/Tmax	0.082 / 0.201
Refinement	
No. of Observed Data	5167
No. of Parameters	253
R1 ^a , wR2 ^b	0.0349, 0.0826
Goodness of Fit Indictor	1.073

 Table S1. Crystallographic Data.

CCDC # 1527551 (**1**-AuCl)

3. Absorption spectra

Figure S2. UV-vis absorption spectra of (a) 1–AuCl and (b) 2–AuCl with changing the concentration. The offsets of the spectra were red-shifted under concentrated conditions (1–AuCl: 3×10^{-5} M, 2–AuCl: 5×10^{-4} M).

3. DFT calculation

Figure S3. Unoccupied orbitals in the frontier orbitals regions finite (a) 1–AuCl and (b) 2–AuCl chains containing 16 Au atoms.

(a) Finite 1-AuCl chain with 4 Au atoms

HOMO: -5.74 eV

obtained from TD-DFT calculations with B3LYP functional.

LUMO: -2.48 eV Figure S4. Frontier orbitals of finite (a) 1–AuCl and (b) 2–AuCl chains containing 4 Au atoms that are responsible for electronic transition with substantial oscillator strength (f),