Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017 ### **Electronic Supplementary Information (ESI) – Table of Contents** # Luminescent Tb(III) and Sm(III) complexes with a 1,4,7-triazacyclononane-based tris-aryloxide ligand for high-performance oxygen sensors Hidetaka Nakai,*a,b,c,d Masafumi Kuyama, Juncheol Seo,a,c Takahiro Goto,a Takahiro Matsumoto, and Seiji Ogo*a,b,c #### **Tables** | Table S1 Crystallographic data for 1 Sm | S 2 | |--|-----| | Table S2 Continuous shape measures (CSM) values calculated for the Sm^{3+} in 1^{Sm} | S 3 | | <u>Figures</u> | | | Fig. S1 Absorption and excitation spectra of 1 Sm | S 4 | | Fig. S2 Luminescence decay curve of 1 Sm | S 4 | | Fig. S3 CIE chromaticity diagram of 1 ^{Tb} /PS, 1 Sm /PS and 1 ^{TbSm} /PS | S 5 | | Fig. S4 Excitation spectra of 1 ^{Tb} /PS and 1 Sm /PS | S 6 | | Legends of Supporting Videos | | | Video S1 Reversible changes of luminescent intensity of 1 ^{Tb} /PS | S 7 | | Video S2 Reversible changes of luminescent color of 1 ^{TbSm} /PS | S 7 | ^a Department of Chemistry and Biochemistry, Graduate School of Engineering, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan ^b Centre for Small Molecule Energy, Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan ^c International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan ^d Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502, Japan # **Tables** **Table S1** Crystallographic data for **1**Sm | 1 Sm | | | | | | | |-----------------------------|-------------------------|--|--|--|--|--| | | 1*** | | | | | | | Formula | $C_{37}H_{50}N_3O_4Sm$ | | | | | | | Fw | 751.22 | | | | | | | Crystal system | triclinic | | | | | | | Space group | P-1 (No. 2)
7.930(3) | | | | | | | a (Å) | | | | | | | | b (Å) | 14.405(5) | | | | | | | c (Å) | 16.407(4) | | | | | | | α (deg) | 68.230(11) | | | | | | | β (deg) | 76.869(14) | | | | | | | γ (deg) | 84.941(14) | | | | | | | $V(\text{Å}^3)$ | 1694.9(10) | | | | | | | Z | 2 | | | | | | | μ (cm ⁻¹) | 17.79 | | | | | | | F(000) | 774.00 | | | | | | | $D_{ m calcd}({ m g/cm}^3)$ | 1.472 | | | | | | | Temperature (K) | 93 | | | | | | | Reflections collected | 20543 | | | | | | | Independent reflection | 7698 | | | | | | | | $(R_{\rm int}=0.032)$ | | | | | | | Data/parameters | 7698/412 | | | | | | | $R_1[I > 2\sigma(I)]$ | 0.0305 | | | | | | | wR_2 (all data) | 0.0699 | | | | | | | Goodness-of-fit | 1.099 | | | | | | Table S2 Continuous shape measures (CSM) values calculated for the Sm^{3+} in 1^{Sm} | | HP-7 | HPY-7 | PBPY-7 | COC-7 | CTPR-7 | JPBPY-7 | JETPY-7 | |--|--------|--------|--------|-------|--------|---------|---------| | 1 Sm | 33.718 | 20.512 | 8.700 | 1.039 | 2.437 | 11.363 | 13.857 | | HP-7 (D _{7h}) Heptagon | | | | | | | | | HPY-7 (C _{6v}) Hexagonal pyramid | | | ramid | | | | | PBPY-7 (D_{5h}) Pentagonal bipyramid COC-7 (C_{3v}) Monocapped octahedron (Capped octahedron) CTPR-7 (C_{2v}) Monocapped trigonal prism (Capped trigonal prism) JPBPY-7 (D_{5h}) Johnson pentagonal bipyramid (J13) JETPY-7 (C_{3v}) Johnson elongated triangular pyramid (J7) M, Llunell, D. Casanova, J. Cirera, P. Alemany and S. Alvarez, *SHAPE*, *version 2.1*, Barcelona, 2013. D. Casanova, P. Alemany, J. M. Bofill and S. Alvarez, Chem. – Eur. J., 2003, 9, 1281. # **Figures** **Fig. S1** Absorption (black dot) and excitation (red) spectra of 1Sm in THF at room temperature. The excitation spectrum was detected at 648 nm. Fig. S2 Luminescence decay curve of 1^{Sm} under air (red, 12.2 µs) in THF at room temperature. The decay was monitored by a TBX-850 detector (250–850 nm) with a Y47 color filter ($\lambda_{\text{ex}} = 300 \text{ nm}$). Fitted by single exponential curve (black). **Fig. S3** CIE 1931 chromaticity diagram of $\mathbf{1}^{\text{Tb}}/\text{PS}$, $\mathbf{1}^{\text{Sm}}/\text{PS}$ and $\mathbf{1}^{\text{TbSm}}/\text{PS}$ ($\lambda_{\text{ex}} = 300 \text{ nm}$). **Fig. S4** Excitation spectra (red) of (a) $\mathbf{1}^{\text{Tb}}/\text{PS}$ and (b) $\mathbf{1}^{\text{Sm}}/\text{PS}$ at room temperature (Excitation spectra of $\mathbf{1}^{\text{Tb}}/\text{PS}$ and $\mathbf{1}^{\text{Sm}}/\text{PS}$ were detected at 547 and 647 nm, respectively) and absorption spectra (black dot) of (a) $\mathbf{1}^{\text{Tb}}$ and (b) $\mathbf{1}^{\text{Sm}}$ in THF at room temperature. # **Legends of Supporting Videos** **Video S1**. Reversible changes of luminescent intensity of $\mathbf{1}^{\text{Tb}}/\text{PS}$ by alternating changes in the oxygen concentration ($\lambda_{\text{ex}} = 300 \text{ nm}$). **Video S2**. Reversible changes of luminescent color of $\mathbf{1}^{\text{TbSm}}/\text{PS}$ by alternating changes in the oxygen concentration ($\lambda_{\text{ex}} = 300 \text{ nm}$).