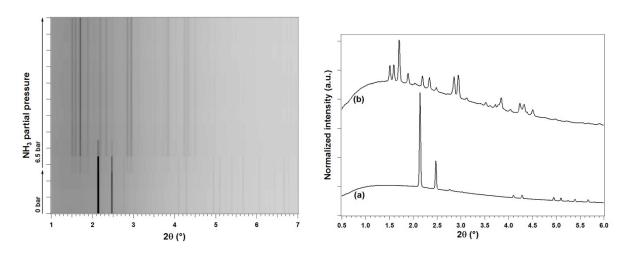
Supporting information for

Synthesis, structures and thermal decomposition of ammine $M_x B_{12} H_{12}$ complexes (M = Li, Na, Ca)

Bjarne R. S. Hansen,^a Nikolay Tumanov,^b Antonio Santoru,^c Claudio Pistidda,^c Thomas Klassen,^c

Martin Dornheim,^c Yaroslav Filinchuk^b and Torben R. Jensen^{a*}

- ^a Center for Materials Crystallography, iNANO, and Department of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus, Denmark
- ^b Institute of Condensed Matter and Nanosciences, Université Catholique de Louvain, Place L. Pasteur 1, 1348, Louvain-la-Neuve (Belgium)
- ^c Institute of Materials Research, Materials Technology, Helmholtz-Zentrum Geesthacht GmbH, Max-Planck-Strasse 1, D-21502 Geesthacht, Schleswig-Holstein, Germany


^{*}corresponding author: trj@chem.au.dk

Sample preparation

 $K_2B_{12}H_{12}$ was purchased at Katchem, however no volume or temperature increase was observed during synthesis. PXD and FTIR confirm that no reaction between $K_2B_{12}H_{12}$ and NH₃ occurred at the used physical conditions (not shown).

In situ SR-PXD formation of M-B₁₂H₁₂·xNH₃

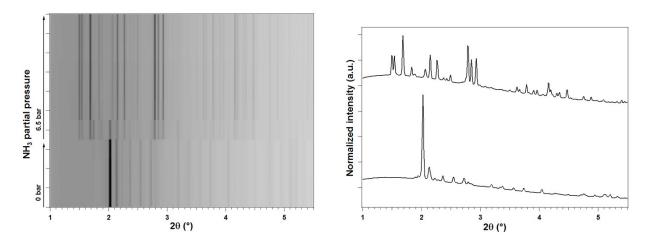

$Li_2B_{12}H_{12} + NH_3$ (g)

Figure S1. Left: *In situ* SR-PXD data of Li₂B₁₂H₁₂ in a sapphire capillary with increasing NH₃ partial pressure. Right: Diffractograms before and after NH₃ reaction, (a) Li₂B₁₂H₁₂, (b) Li₂B₁₂H_{12*7NH₃.}

 $\text{Li}_2\text{B}_{12}\text{H}_{12}$ reacts rapidly with NH₃. $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot7\text{NH}_3$ is observed within two scans after 6.5 bar NH₃ partial pressure is applied, *i.e.* ~30 seconds, as exposure time was 15 seconds. Diffractograms show the starting and resulting compounds, *i.e.* $\text{Li}_2\text{B}_{12}\text{H}_{12}$ and $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot7\text{NH}_3$.

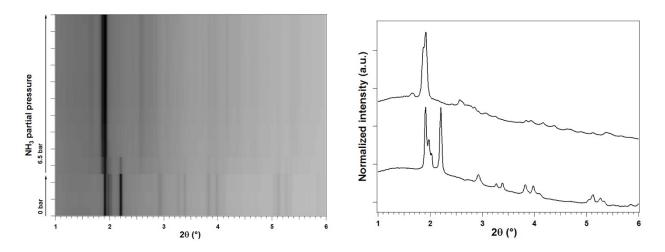

$Na_2B_{12}H_{12} + NH_3(g)$

Figure S2 Left: *In situ* SR-PXD data of $Na_2B_{12}H_{12}$ in a sapphire capillary with increasing NH_3 partial pressure. Right: Diffractograms before and after NH_3 reaction showing $Na_2B_{12}H_{12}\cdot H_2O$ and $Na_2B_{12}H_{12}\cdot xNH_3\cdot yH_2O$

 $Na_2B_{12}H_{12}$ reacts rapidly with NH_3 . An ammoniated compound is observed within two patterns after 6.5 bar NH_3 partial pressure is applied, *i.e.* ~30 seconds, as exposure time was 15 seconds. However that resulting compound is different from as synthesized $Na_2B_{12}H_{12}\cdot 4NH_3$. The starting material has a few peaks corresponding to hydrated $Na_2B_{12}H_{12}$, perhaps from contamination in the glovebox or during transport. Thus the resulting compounds may be $Na_2B_{12}H_{12}$ with both H_2O and NH_3 . Nevertheless, the fast reaction with NH_3 is demonstrated.

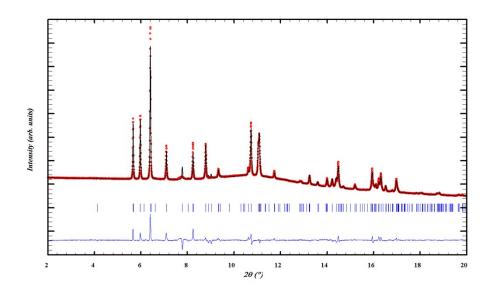

$CaB_{12}H_{12} + NH_3(g)$

Figure S3 Left: *In situ* SR-PXD data of CaB₁₂H₁₂ in a sapphire capillary with increasing NH₃ partial pressure. Right: Diffractograms before and after NH₃ reaction, showing CaB₁₂H₁₂ and CaB₁₂H₁₂•*n*NH₃.

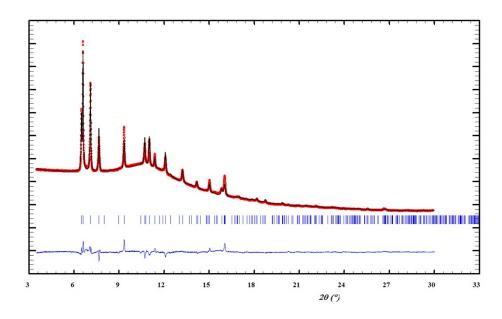
 $CaB_{12}H_{12}$ reacts rapidly with NH₃. $CaB_{12}H_{12}\cdot nNH_3$ is observed within two scans after 6.5 bar NH₃ partial pressure is applied, *i.e.* ~30 seconds, as exposure time was 15 seconds. Diffractograms show the starting and resulting compounds.

Rietveld refinement of the *RT* diffractogram from the *in situ* SR-PXD of Li₂B₁₂H₁₂·7NH₃, shows good agreement with the reported structure of Li₂B₁₂H₁₂·7NH₃ (Figure S4). However, the (-1 1 2) Bragg peak at $2\theta = 7.78^{\circ}$ is broad compared to the rest of the diffraction peaks, which may contribute negatively to the quality of the refinement. Furthermore, less intense (1 1 2) and (0 1 3) Bragg peaks (at $2\theta = 8.90^{\circ}$ and 9.02° , respectively) are not observed in the experimental data. Nevertheless refined unit cell parameters correlate well with those reported for Li₂B₁₂H₁₂·7NH₃ (at $T = -123 \, ^{\circ}$ C), see Table S1.

Figure S4. Rietveld refinement of $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot7\text{NH}_3$ at RT, $\lambda=0.7750$ Å. The entire in situ SR-PXD plot is presented in Figure 7. Red line: experimental data; black line: calculated diffractogram, blue line: difference pattern. Blue markers: reported structure of $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot7\text{NH}_3$ ($R_{\text{Bragg}}=9.31$, global $\chi^2=17.9$).

Table S1. Unit cell parameters from Rietveld refinement of $\text{Li}_2\text{B}_{12}\text{H}_{12}$ 7NH₃ (obtained at 25 °C) as compared to the reported values (obtained at -123 °C).¹

Temperature (°C)	a (Å)	b (Å)	c (Å)	β (°)
-123	8.3050(2)	14.729(3)	15.728(3)	98.90(3)
25	8.3817(1)	14.865(1)	15.863(7)	98.80(1)


The (1 1 2) and (0 1 3) diffraction peaks (at $2\theta = 8.90$ and 9.02°) are also not observed in the previously reported experimental data and the broad peak (-1 1 2) is not included in the calculated model, even though the reflection is clearly part of the structure and observed in the experimental data.¹ The broad peak at $2\theta = 7.78^{\circ}$ can only be modelled with a space group containing a glide plane (e.g. $P2_1/c$) and is otherwise absent (e.g. in $P2_1$) from the model. The broadness of the (-1 1 2) diffraction peak may be due to stacking faults generated by the glide plane. Although the reported structural solution of $Li_2B_{12}H_{12}$.7NH₃ is most likely valid, there are numerous discrepancies when comparing the reported calculated data (ref ¹ Figure 2.g) with the reported experimental data (ref ¹ Figure 2.b) and CIF file found in structural databases. Similar discrepancies are observed in the present data, making refinement of $Li_2B_{12}H_{12}$.7NH₃ using the reported structural model challenging.

General structure determination details

The FOX software was used for indexing of all powder patterns and for structure solution by global optimization in direct space. Rietveld refinement was done in the Fullprof suite software. In all cases the hydrogen positions are tentative.

Structure determination details for Li₂B₁₂H₁₂·4NH₃

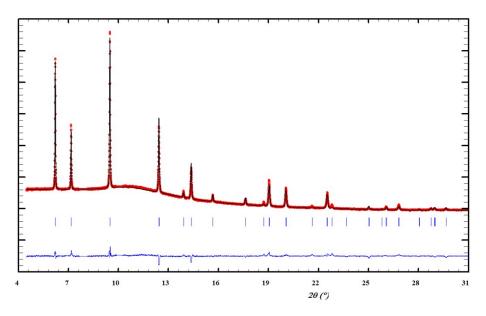

The powder pattern measured at 100 °C was used for structure solution. The Li₂B₁₂H₁₂·4NH₃ phase is isostructural to the Na₂B₁₂H₁₂·4NH₃, so its model was used as initial and refinement was done in the same way, expect for Li⁺ parameters. Since Li is a weak scatterer, we could not refine its position from X-ray powder data, so we kept it at same position as Na⁺ in the initial model. Thermal displacement factors for anion and ammonia molecule are refined independently, making thermal displacement factors for hydrogen atoms set 1.25 times higher than those of the heavy atoms to which they are attached, while thermal displacement factors for cation was fixed.

Figure S5. Rietveld refinement of $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot4\text{NH}_3$, obtained at 100 °C, $\lambda=0.7750$ Å, red dots represent the experimental data, the black line is the refined fit and the blue line shows the difference. Tick marks: $\text{Li}_2\text{B}_{12}\text{H}_{12}\cdot4\text{NH}_3$. R_{wp} (corrected for background) = 24.59%, $\chi^2=18.25$.

Structure determination details for Na₂B₁₂H₁₂·2NH₃

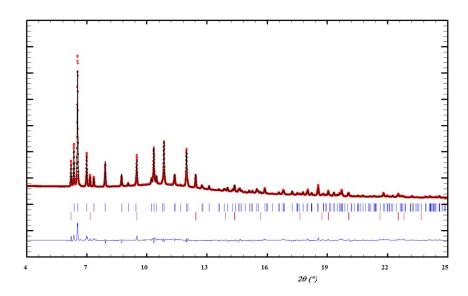

The powder pattern measured at 120 °C was used for structure solution. The structural model for $Na_2B_{12}H_{12}\cdot 2NH_3$ was found in P-3m1 space group. The center of the $B_{12}H_{12}^{2}$ - anion is located on 1a position and it is oriented in such way that symmetry elements of the anion and the special position are matched. The Na^+ cation and the N atom of ammonia molecule is located on 2d position (1/3, 2/3, z), so only z coordinates is refined. The H atom of ammonia is located on 6i position. Its coordinates were refined taking into account special position and soft constrain for N-H distance. Thermal displacement factors for cation, anion and ammonia molecule are refined independently, making thermal displacement factors for hydrogen atoms are set 1.2 times higher than those of the heavy atoms to which they are attached.

Figure S6. Rietveld refinement of Na₂B₁₂H₁₂·2NH₃, obtained at 120 °C, $\lambda = 0.7750$ Å, red dots represent the experimental data, the black line is the refined fit and the blue line shows the difference. Tick marks: Na₂B₁₂H₁₂·2NH₃. R_{wp} (corrected for background) = 22.1038%, $\chi^2 = 3.40$.

Structure determination details for Na₂B₁₂H₁₂·4NH₃

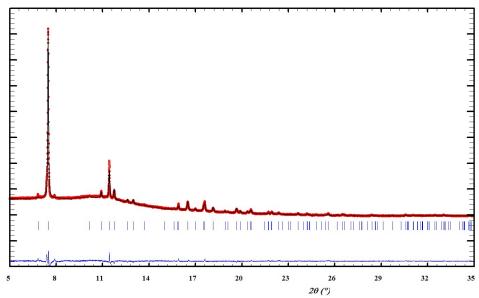
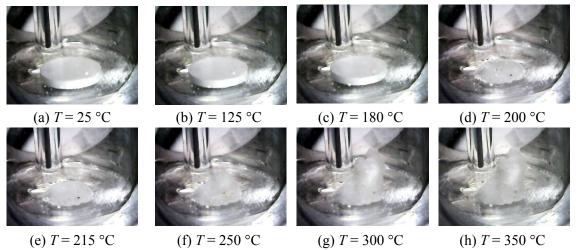
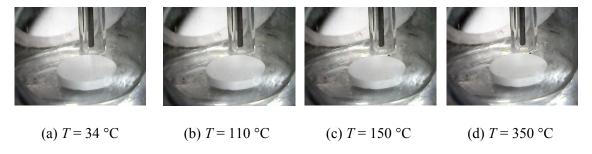

The powder pattern measured at 23 °C was used for structure solution. At this temperature, the sample contains two crystalline phases: Na₂B₁₂H₁₂·4NH₃ and Na₂B₁₂H₁₂·2NH₃, latter was a modelled using result of previous refinement. The structural model for Na₂B₁₂H₁₂·2NH₃ was found in *P*21/*n* space group. The center of the B₁₂H₁₂²· anion is located on 1a position and it is oriented in such way that symmetry elements of the anion and the special position are matched. The Na⁺ cation and the N atom of ammonia molecule is located on 2*d* position (1/3, 2/3, *z*), so only *z* coordinates are refined. The H atom of ammonia is located on 6*i* position. Its coordinates was refined taking into account special position and soft constrain for N-H distance. Thermal displacement factors for cation, anion and ammonia molecule are refined independently, making thermal displacement factors for hydrogen atoms set 1.25 times higher than those of the heavy atoms to which they are attached.

Figure S7. Rietveld refinement of Na₂B₁₂H₁₂·4NH₃, obtained at 23 °C, $\lambda = 0.7750$ Å, red dots represent the experimental data, the black line is the refined fit and the blue line shows the difference. From refinement the sample contents is determined as 82.3(5) wt% Na₂B₁₂H₁₂·4NH₃ and 17.7(2) wt% Na₂B₁₂H₁₂·2NH₃. Tick marks: Na₂B₁₂H₁₂·4NH₃ (top, blue), Na₂B₁₂H₁₂·2NH₃ (bottom, red). R_{wp} (corrected for background) = 25.52%, $\chi^2 = 182.3$.

Structure determination details for CaB₁₂H₁₂·3NH₃


The powder pattern measured at 225 °C was used for structure solution. An initial structural model for CaB₁₂H₁₂·3NH₃ was found in I2/a space group with unit cell parameters a = 8.8359, b = 11.8929, c = 14.7748 Å, $\beta = 118.434$ °, V = 1365.30 Å³. Symmetry analysis in PLATON² indicated missing symmetry and suggested R-3c space group with unit cell parameters a = 11.86978(18), c = 16.7977(5) Å, V = 2049.58(7)Å³.. The structure was finally solved in this space group. The Ca²⁺ cation is located on 6a position, center of the B₁₂H₁₂²⁻ anion is located on 6b position and it is oriented in such way that symmetry elements of the anion and the special position are matched. The N atom of ammonia molecule is laying on 3-fold axis (18e position), so only x coordinate is refined. The H atoms of ammonia are in the general position, but soft distance constrains are applied to keep geometry and orientation of the ammonia molecule. The H atoms of ammonia are disordered by 2-fold axis. Thermal displacement factors for cation, anion and ammonia molecule are refined independently, making thermal displacement factors for hydrogen atoms set 1.2 times higher than those of the heavy atoms to which they are attached.


Figure S8. Rietveld refinement of $CaB_{12}H_{12}\cdot 3NH_3$, obtained at 225 °C, $\lambda = 0.7750$ Å, red dots represent the experimental data, the black line is the refined fit and the blue line shows the difference. Tick marks: $CaB_{12}H_{12}\cdot 3NH_3$. R_{wp} (corrected for background) = 22.02%, $\chi^2 = 3.002$.

Temperature programmed photographic analysis (TPPA)


The TPPA measurement of Li₂B₁₂H₁₂·7NH₃ is shown below

Figure S9. TPPA measurement of Li₂B₁₂H₁₂·7NH₃ in the temperature range RT - 350 °C ($\Delta T/\Delta t = 5$ °C/min).

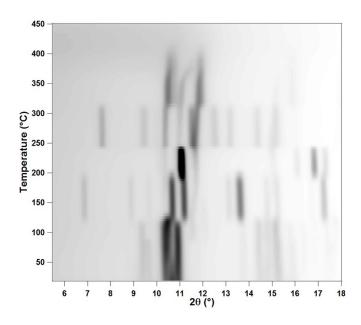

Figure S10. TPPA measurement of Na₂B₁₂H₁₂·4NH₃ in the temperature range RT - 350 °C ($\Delta T/\Delta t = 5$ °C/min).

Figure S11. TPPA measurement of $Ca_2B_{12}H_{12}\cdot nNH_3$ in the temperature range RT-400 °C ($\Delta T/\Delta t=5$ °C/min).

In situ SR-PXD decomposition at Maxlab

CaB₁₂H₁₂·nNH₃

Figure S12. *In situ* SR-PXD of CaB₁₂H₁₂·*n*NH₃ in the temperature range RT - 450 °C ($\Delta T/\Delta t = 5$ °C/min), $\lambda = 0.9938$ Å.

The *in situ* SR-PXD experiment conducted at Maxlab shows the structural changes as observed at SLS at the same temperatures. However, since the sample was heated to higher temperatures the formation of $CaB_{12}H_{12}$ is observed at T = 315 °C. $CaB_{12}H_{12}$ decompose and decrease in diffracted intensity from T = 350 °C in agreement with the thermal analysis.

Structural Parameters

Table S2. Experimental structural parameters for monoclinic Li₂B₁₂H₁₂·4NH₃, space group P 2₁/n (No. 14), a = 8.4122(3), b = 9.5193(5), c = 9.6434(5) Å, $\beta = 99.472(4)$ °, V = 761.70(6) Å³.

Atom	Wyckoff site	X	y	Z	Occupancy	B (Å ²)
N1	4e	-0.0119(6)	0.2002(4)	0.4864(7)	1	11.35(15)
H11	4e	-0.0142(11)	0.1066(8)	0.4665(16)	1	13.62(18)
H12	4e	0.0569(11)	0.2163(12)	0.5682(13)	1	13.62(18)
H13	4e	-0.1120(7)	0.2319(12)	0.4931(15)	1	13.62(18)
N2	4e	0.4229(5)	-0.0072(6)	0.6728(5)	1	11.35(15)
H21	4e	0.3729(12)	-0.0587(14)	0.7322(12)	1	13.62(18)
H22	4e	0.4912(14)	-0.0630(14)	0.6327(11)	1	13.62(18)
H23	4e	0.3487(12)	0.0319(16)	0.6034(10)	1	13.62(18)
Li1	4e	0.58175	0.17913	0.80778	1	8.68
B1	4e	-0.10727	0.0158	-0.16156	1	6.2(3)
B2	4e	0.08469	-0.06287	-0.13483	1	6.2(3)
В3	4e	-0.19902	-0.02451	-0.01191	1	6.2(3)
B4	4e	0.11216	-0.15065	0.03132	1	6.2(3)
B5	4e	-0.07618	-0.15502	-0.07699	1	6.2(3)
B6	4e	-0.06352	-0.12588	0.10615	1	6.2(3)
H1	4e	-0.18475	0.02659	-0.27854	1	7.5(3)
H2	4e	0.14653	-0.10961	-0.23314	1	7.5(3)
H3	4e	-0.34362	-0.04205	-0.02014	1	7.5(3)
H4	4e	0.19633	-0.26241	0.05487	1	7.5(3)
H5	4e	-0.13036	-0.26588	-0.13336	1	7.5(3)
H6	4e	-0.10701	-0.21843	0.18359	1	7.5(3)

Table S3. Bond lengths for monoclinic Li₂B₁₂H₁₂·4NH₃, space group P 2₁/n (No. 14), a = 8.4122(3), b = 9.5193(5), c = 9.6434(5) Å, $\beta = 99.472(4)$ °, V = 761.70(6) Å³.

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
N1	H13	0.9068(91)	B2	H2	1.2368(1)
	H11	0.911(9)		B1	1.7601(1)
	H12	0.9113(122)		B5	1.7777(1)
	Li1	2.3138(62)		В3	1.7808(1)
H11	N1	0.911(9)		B4	1.7880(1)
	H12	1.4890(157)		B6	1.8311(1)
	H13	1.4949(138)	В3	Н3	1.2174(1)
	H11	2.1314(120)		B6	1.7605(1)
	H2	2.3409(139)		B2	1.7808(1)
H12	N1	0.9113(122)		B1	1.7867(1)
	H11	1.4890(157)		B5	1.7940(1)
	H13	1.4922(116)		B4	1.8423(1)
	Н6	2.3612(123)	B4	H4	1.2774(1)
H13	N1	0.9068(91)		B5	1.7488(1)
	H12	1.4922(116)		В6	1.7639(1)
	H11	1.4949(138)		B2	1.7880(1)
	Н3	2.2068(114)		B1	1.8011(1)
N2	H21	0.9081(134)		В3	1.8423(1)
	H22	0.9137(136)	B5	H5	1.2391(1)
	H23	0.9157(112)	20	B4	1.7488(1)
	Lil	2.4604(50)		В6	1.7735(1)
H21	N2	0.9081(134)		B2	1.7777(1)
1121	H22	1.4923(168)		B3	1.7940(1)
	H23	1.4983(168)		B1	1.8186(1)
	H2	2.0451(108)	B6	H6	1.2481(1)
	H6	2.1853(133)	Bo	В3	1.7605(1)
H22	N2	0.9137(136)		B4	1.7639(1)
1122	H23	1.4904(172)		B5	1.7735(1)
	H21	1.4923(168)		B1	1.7875(1)
	H6	2.3207(131)		B2	1.8311(1)
H23	N2	0.9157(112)	H1	B1	1.2108(1)
1123	H22	1.4904(172)	H2	B2	1.2368(1)
	H21	1.4983(168)	112	H21	2.0451(108)
	H4	2.4732(134)		H11	2.3409(139)
Li1	H5	1.8700(1)	Н3	B3	1.2174(1)
1/11	H4	2.2481(1)	113	H13	2.2068(114)
	N1	2.3138(62)	H4	B4	1.2774(1)
	N2	2.4604(50)	117	Li1	2.2481(1)
B1	H1	1.2108(1)		H23	2.4732(134)
БI			U.		
	B2	1.7601(1)	H5	B5	1.2391(1)
	B3	1.7867(1)	11/	Lil	1.8700(1)
	B6	1.7875(1)	Н6	B6	1.2481(1)
	B4	1.8011(1)		H21	2.1853(133)
	B5	1.8186(1)		H22	2.3207(131)
			I	H12	2.3612(123)

Table S4. Experimental structural parameters for monoclinic Na₂B₁₂H₁₂·4NH₃, space group P 2₁/n (No. 14), a = 8.6875(2), b = 9.4168(3), c = 9.9096(3) Å, $\beta = 98.3296(18)^{\circ}$, V = 802.14(4) Å³.

Atom	Wyckoff site	X	y	Z	Occupancy	B (Å ²)
N1	4e	-0.0137(4)	0.2082(4)	0.4968(4)	1	7.48(10)
H11	4e	0.0488(10)	0.1316(8)	0.5242(14)	1	8.98(12)
H12	4e	-0.0081(10)	0.2710(11)	0.5678(12)	1	8.98(12)
H13	4e	-0.1125(6)	0.1789(10)	0.4694(15)	1	8.98(12)
N2	4e	0.4114(4)	0.0059(4)	0.6805(4)	1	7.48(10)
H21	4e	0.4090(14)	-0.0725(11)	0.7339(11)	1	8.98(12)
H22	4e	0.4506(14)	-0.0176(14)	0.6029(8)	1	8.98(12)
H23	4e	0.3144(10)	0.0432(14)	0.6583(10)	1	8.98(12)
Na1	4e	0.5818(3)	0.1791(3)	0.8078(3)	1	10.2(9)
B1	4e	-0.10727	0.0158	-0.16156	1	5.2(9)
B2	4e	0.08469	-0.06287	-0.13483	1	5.2(9)
В3	4e	-0.19902	-0.02451	-0.01191	1	5.2(9)
B4	4e	0.11216	-0.15065	0.03132	1	5.2(9)
B5	4e	-0.07618	-0.15502	-0.07699	1	5.2(9)
B6	4e	-0.06352	-0.12588	0.10615	1	5.2(9)
H1	4e	-0.18475	0.02659	-0.27854	1	6.2(12)
H2	4e	0.14653	-0.10961	-0.23314	1	6.2(12)
Н3	4e	-0.34362	-0.04205	-0.02014	1	6.2(12)
H4	4e	0.19633	-0.26241	0.05487	1	6.2(12)
H5	4e	-0.13036	-0.26588	-0.13336	1	6.2(12)
H6	4e	-0.10701	-0.21843	0.18359	1	6.2(12)

Table S5. Bond lengths for monoclinic Na₂B₁₂H₁₂·4NH₃, space group P 2₁/n (No. 14), a = 8.6875(2), b = 9.4168(3), c = 9.9096(3) Å, $\beta = 98.3296(18)^\circ$, V = 802.14(4) Å³.

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)

N1	H13	0.9050(69)	B2	H2	1.2582(1)
	H12	0.9150(119)		B5	1.8074(1)
	H11	0.9199(89)		B1	1.8089(1)
	Na1	2.4026(50)		В6	1.8136(1)
H11	N1	0.9199(89)		B4	1.8268(1)
	H12	1.4887(137)		В3	1.8329(1)
	H13	1.4955(107)	В3	Н3	1.2579(1)
H12	N1	0.9150(119)	-	B5	1.8068(1)
	H11	1.4887(137)		В6	1.8074(1)
	H13	1.5064(143)		B1	1.8224(1)
	Н3	2.1921(97)		B2	1.8329(1)
H13	N1	0.9050(69)	-	B4	1.8355(1)
	H11	1.4955(107)	B4	H4	1.2835(1)
	H12	1.5064(143)		В6	1.8060(1)
	H2	2.4071(144)		B1	1.8155(1)
N2	H23	0.9100(99)		B5	1.8226(1)
	H21	0.9103(113)		B2	1.8268(1)
	H22	0.9122(107)		В3	1.8355(1)
	Na1	2.4294(45)	B5	Н5	1.2439(1)
H21	N2	0.9103(113)	-	В3	1.8068(1)
	H22	1.4896(149)		B2	1.8074(1)
	H23	1.4984(154)		B1	1.8158(1)
	Н6	2.0307(104)		B4	1.8226(1)
	H2	2.3757(124)		В6	1.8230(1)
H22	N2	0.9122(107)	В6	Н6	1.2551(1)
	H23	1.4891(158)		B4	1.8060(1)
	H21	1.4896(149)		В3	1.8074(1)
	H22	2.3480(136)		B2	1.8136(1)
H23	N2	0.9100(99)		B5	1.8230(1)
	H22	1.4891(158)		B1	1.8280(1)
	H21	1.4984(154)	H1	B1	1.2574(1)
	H2	2.4103(111)	H2	B2	1.2582(1)
Na1	H5	1.9094(30)		H21	2.3757(124)
	H4	2.3287(26)		H13	2.4071(144)
	N1	2.4026(50)		H23	2.4103(111)
	N2	2.4294(45)	H3	В3	1.2579(1)
B1	H1	1.2574(1)		H12	2.1921(97)
	B2	1.8089(1)	H4	B4	1.2835(1)
	B4	1.8155(1)		Na1	2.3287(26)
	B5	1.8158(1)	H5	В5	1.2439(1)
	В3	1.8224(1)		Na1	1.9094(30)
	В6	1.8280(1)	Н6	В6	1.2551(1)
				H21	2.0307(104)

Table S6. Experimental structural parameters for trigonal Na₂B₁₂H₁₂·2NH₃, space group *P*-3*m* (No. 164), a = 7.1672(1), c = 7.1574(2) Å, V = 318.41(1) Å³.

Atom	Wyckoff site	X	y	Z	Occupancy	B (Å ²)
B1	6i	0.16741	0.08370	0.20340	1	2.1(4)
B2	6i	0.13981	0.27962	0.04485	1	2.1(4)
H1	6i	0.2859	0.14294	0.34736	1	2.5(5)
H2	6i	0.23876	0.47753	0.076596	1	2.5(5)
N1	2d	0.33333	0.66667	0.4852(6)	1	13.53(16)
H11	6i	0.2638(2)	0.7362(2)	0.4435(6)	1	16.2(2)
Na1	2d	0.33333	0.66667	0.8052(3)	1	10.93(10)

Table S7. Bond lengths for trigonal Na₂B₁₂H₁₂·2NH₃, space group P-3m (No. 164), a = 7.1672(1), c = 7.1574(2) Å, V = 318.41(1) Å³.

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
B1	H1	1.2659(1)	H2	B2	1.2493(1)
	B1	1.7998(1)		H2	2.0334(1)
	B1	1.7998(1)		H2	2.0334(1)
	B2	1.8911(1)		Na1	2.2697(18)
	B2	1.8912(1)	N1	H11	0.9133(26)
	B2	1.9084(1)		H11	0.9133(23)
B2	H2	1.2493(1)		H11	0.9133(23)
	B2	1.8505(1)		Na1	2.2904(48)
	B2	1.8505(1)	H11	N1	0.9133(26)
	B1	1.8911(1)		H11	1.4951(23)
	B1	1.8912(1)		H11	1.4951(23)
	B1	1.9084(1)		H1	2.1193(33)
H1	B1	1.2659(1)	Na1	H2	2.2696(18)
	H11	2.1193(32)		H2	2.2697(18)
				H2	2.2697(18)
				N1	2.2904(48)

Table S8. Experimental structural parameters for trigonal $CaB_{12}H_{12}\cdot 3NH_3$, space group *R-3c* (No. 167), a = 11.86978(18), c = 16.7977(5) Å, V = 2049.58(7)Å³.

Atom	Wyckoff site	X	y	Z	Occupancy	B (Å ²)
B1	36f	0.00000	-0.08756	0.08099	1	3.92(16)
B2	36f	0.00000	-0.14166	-0.01912	1	3.92(16)
H1	36f	0.00000	-0.14820	0.13710	1	4.7(2)
H2	36f	0.00000	-0.23970	-0.03240	1	4.7(2)
Ca1	6a	0.00000	0.00000	0.25000	1	5.97(10)
N1	18e	0.20716	0.00000	0.25000	0.5	10.5(3)
H11	36f	0.1998(2)	-0.06498(10)	0.21782(7)	0.5	12.6(3)
H12	36f	0.2258(2)	-0.01310(14)	0.30052(5)	0.5	12.6(3)
H13	36f	0.27136(2)	0.07803(8)	0.23169(8)	0.5	12.6(3)

Table S9. Bond lengths for trigonal $CaB_{12}H_{12}\cdot 3NH_3$, space group *R-3c* (No. 167), a = 11.86978(18), c = 16.7977(5) Å, V = 2049.58(7)Å³.

Atom 1	Atom 2	Distance (Å)	Atom 1	Atom 2	Distance (Å)
B1	H1	1.1859(2)	H11	H13	0.8587(18)
	B2	1.8001(1)		H12	0.8597(17)
	B2	1.8001(1)		N1	0.9096(14)
	B2	1.8001(1)		H12	1.4880(15)
	B1	1.8002(1)		H13	1.4884(13)
	B1	1.8002(1)		H11	1.7186(15)
B2	H2	1.1849(2)		H2	2.2665(21)
	B2	1.8002(1)		H1	2.4690(19)
	B2	1.8002(1)	H12	H13	0.8592(16)
	B1	1.8001(1)		H11	0.8597(17)
	B1	1.8001(1)		N1	0.9098(12)
	B1	1.8001(1)		H11	1.4880(15)
H1	B1	1.1859(1)		H13	1.4881(16)
	H11	2.4690(19)		H12	1.7185(12)
H2	B2	1.1849(1)		H2	2.3413(18)
	H11	2.2665(11)	H13	H11	0.8587(18)
	H12	2.3413(14)		H12	0.8592(16)
Cal	N1	2.4589(1)		N1	0.9096(11)
	N1	2.4589(1)		H12	1.4881(16)
	N1	2.4589(1)		H11	1.4884(13)
N1	H11	0.9096(14)		H13	1.7181(13)
	H13	0.9096(11)			
	H13	0.9096(13)			
	H11	0.9096(12)			
	H12	0.9098(11)			
	H12	0.9098(12)			
	Ca1	2.4589(1)			

References

- 1 Z. Huang, J. Gallucci, X. Chen, T. Yisgedu, H. K. Lingam, S. G. Shore and J.-C. Zhao, *J. Mater. Chem.*, 2010, **20**, 2743–2745.
- 2 A. L. Spek, J. Appl. Crystallogr., 2003, 36, 7–13.