Electronic supplementary information

Mesoporous Mn₂O₃/reduced graphene oxide (rGO) composite with

enhanced electrochemical performance for Li-ion battery

Harsharaj S. Jadhav,^a Gaurav M. Thorat,^a Bharat B. Kale^b and Jeong Gil Seo^{a*}

^aDepartment of Energy Science and Technology, Energy and Environment Fusion Technology Center, Myongji University, Nam-dong, Cheoin-gu, Yongin-si, Republic of Korea.

^bCentre for Materials for Electronic Technology(C-MET), under DeitY, Panchawati, Off Pashan Road, Pune 411008, India

Corresponding author E-mail: jgseo@mju.ac.kr Tel: +82-31-324-1338

Figure S1. Schematic representation of synthesis of porous Mn_2O_3/rGO by chemical coprecipitation technique.

Figure S2. Illustration of growth mechanism of bare Mn_2O_3 .

Figure S3. FE-SEM images of rGO at different magnifications.

Figure S4. Electrochemical performance of rGO based electrode.

Figure S5. Coulombic efficiency of Mn_2O_3 and Mn_2O_3/rGO as a function of cycle number.

Material	Synthesis method	Specific capacity	Cycles	Reference
		(mA h g ⁻¹)		
Mn ₃ O ₄ /graphene	Impregnation	500 (60 mA g ⁻¹)	40	13
Mn ₃ O ₄	Precipitation	800 (0.25 C)	40	19
Cu doped Mn ₂ O ₃	Hydrothermal	642 (100 mA g ⁻¹)	100	20
Mn ₂ O ₃ /HHC composite	Co-precipitation	806 (100 mA g-1)	200	21
Mn ₂ O ₃ sheet-like structure	Hydrothermal	$521(300 \text{ mA g}^{-1})$	100	28
Mn_2O_3	Hydrothermal	265(200 mA g ⁻¹)	15	29
Mn ₂ O ₃ microspheres	Hydrothermal	524(200 mA g ⁻¹)	200	30
MnO _x -C nanocomposite	Spray pyrolysis	650(200 mA g ⁻¹)	130	31
GS-Mn ₃ O ₄	Microwave assisted	900(40 mA g ⁻¹)	50	32
Mn ₃ O ₄ hollow spheres	Aerosol spray pyrolysis	980 (200 mA g ⁻¹)	140	33
Mn ₂ O ₃ /rGO	Co-precipitation	1015(230 mA g ⁻¹)	130	Present work

 Table S1. Comparison of specific capacity of reported Mn-based and present work anodes

Figure S6. XRD pattern of Mn_2O_3/rGO electrode (a) before and after (b) 130 discharge/charge cycling test.

Figure S7. Mn₂O₃/rGO electrode analysis before and after cycling using FE-SEM.