Electronic Supplementary Information

A facile one-pot strategy for fabrication of carbon-based microwave absorbers: effects on annealing and paraffin content

Yanan Zhang,^a Bin Quan, ^a Wei Liu, ^a Xiaohui Liang, ^a Guangbin Ji, ^{a,*} and Youwei

 Du^b

^a College of Materials Science and Technology, Nanjing University of Aeronautics

and Astronautics, Nanjing, 210016, P. R. China

^bLaboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, P. R. China

* Corresponding authors: E-mail: gbji@nuaa.edu.cn (G.B. Ji)

Figure S1. The permittivity and permeability values of S500, S600 and S700.

Figure S2. (a, b, c) The TEM images of S500. (d) HRTEM image of Fe_3O_4 nanoparticle.

Figure S3. The Raman spectrum of S500 and S600.

Figure S4. The magnetic hysteresis loop of S500 and S600.

Figure S5. (a, b) The complex permeability of S37 and S46; (c, d) the complex permeability of S37 and S

Figure S6. (a)The reflection loss curves of S37 at the thickness of 1.9, 2.1, 2.3 mm; (b) the quarter wavelength ($\lambda/4$) versus frequency.

	Ms(emu/g)	Hc(Oe)		
		Mr(emu/g)		
S500	10.7	12	0.06	
S600	14.7	22	0.18	
S700	19.0	634	4.85	

Table S1. Magnetic parameters of S500, S600 and S700.

Table S2. microwave absorption properties of some reported absorbing materials.

Sample	$Rl_{min}(dB)$	$f_{ m e}$	<i>d</i> (mm)	Wt%	Ref.
Fe ₃ C/graphitic	-26	2	2.0	70%	43
Fe ₃ C@C	-38	4	1.9	40%	44
Fe/C	-16	3.4	2.0	12.5%	45
Fe-Fe ₃ C/C	-15.5	5.0	1.5	33%	45
Fe ₃ O ₄ @C	-20	3	2.0	50%	46
h-Ni/graphene	-16	3	4.0	60%	47
Ni@C nanorods	-26.3	5.2	2.3	40%	48
carbon-coated Fe ₃ C	-34.6	5.5	1.9	40%	this work