Supporting Information for:

Unusual undecanuclear heterobimetallic Zn_4Ln_7 (Ln = Gd, Dy) nano-sized clusters encapsulating two peroxide anions through spontaneous intake of dioxygen

Hongshan Ke, *† Xiaohua Lu, † Wen Wei, Wenyuan Wang, Gang Xie and Sanping Chen

Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710069, P. R. China

Oxygen atoms	BVS	Assigned protonation levels
O(25)	0.36	H ₂ O
O(26)	0.36	H ₂ O
O(27)	0.36	H ₂ O
O(28)	0.38	H ₂ O
O(29)	1.27	ОН
O(30)	1.26	ОН

Table S1. The bond valence sum (BVS) calculations on O sites.¹

O(31)	1.31	O2 ²⁻
O(32)	1.13	
O(33)	1.32	O_2^{2-}
O(34)	1.14	
O(35)	1.29	ОН
O(36)	1.27	ОН

Table S2. SHAPE² analysis of compounds 1 and 2.

		HPBY	CU	SAPR	TDD	JGBF	JETBPY	JBTPR	BTPR	JSD
		(D _{6h})	(O_h)	(D _{4d})	(D _{2d})	(D _{2d})	(D _{3h})	(C _{2v})	(C _{2v})	(D _{2d})
	Gd(1)	12.423	13.856	7.844	5.522	12.204	26.445	6.954	6.007	5.825
	Gd(2)	14.204	8.340	2.597	1.076	13.437	27.889	2.439	2.282	3.903
	Gd(3)	13.783	9.728	3.277	4.719	14.765	24.675	5.192	3.685	7.740
1	Gd(4)	13.387	9.753	3.448	4.306	15.917	25.240	5.123	3.813	7.030
	Gd(5)	13.947	9.814	3.422	4.679	14.601	24.711	5.375	3.843	7.672
	Gd(6)	14.505	8.687	2.374	1.116	13.651	28.403	2.396	2.214	3.882
	Gd(7)	14.901	10.218	3.270	4.178	16.233	25.643	4.813	3.528	6.750
	Dy(1)	12.438	13.973	7.578	5.292	11.905	26.912	6.662	5.728	5.622
	Dy(2)	16.104	14.061	9.835	8.739	12.685	21.848	9.763	8.404	12.487
	Dy(3)	14.134	9.907	3.120	3.886	16.354	26.081	4.670	3.509	6.526
2	Dy(4)	13.912	9.477	3.265	4.652	14.234	25.039	5.041	3.571	7.560
	Dy(5)	13.787	9.780	3.118	3.943	16.251	25.558	4.882	3.691	6.681
	Dy(6)	14.518	8.850	2.235	1.249	13.373	28.144	2.268	2.200	3.985
	Dy(7)	13.934	9.618	3.168	4.464	14.495	24.594	4.999	3.524	7.573

Abbreviations: HPBY-Hexagonal bipyramid, CU-Cube, SAPR-Square antiprism, TDD-Triangular dodecahedron, JGBF-Johnson-Gyrobifastigium J26, JETBPY-Johnson elongated triangular

bipyramid J14, JBTPR-Johnson biaugmented trigonal prism J50, BTPR-Biaugmented trigonal prism, JSD-Snub diphenoid

Fig. S1. Space-filling representations showing the dimensions and thickness of compound **2**. Color code: Dy, yellow; Zn, turquiose; O, red; N, blue; Cl, bright green.

Fig. S2. Comparing the simulated PXRD (black) and experimetnal patterns of

Fig. S3. Field dependence of the magnetization at low temperatures for 2.

Table S3. χ_T , χ_S , τ and α values of 2 estimated by theoretical calculations on the basis of the generalized Debye model.³

T/K	1.9	2.2	2.5	3.0	3.5
$\chi_T/cm^3 mol^{-1}$	41.19	37.19	32.77	28.98	24.39
$\chi_{\rm S}/{\rm cm}^3~{\rm mol}^{-1}$	11.80	10.81	9.22	9.02	7.60
τ/µsec	142	141	143	137	132
α	0.33	0.32	0.31	0.30	0.29
T/K	4.0	5.0	6.0	7.0	8.0
$\chi_T/cm^3 mol^{-1}$	22.07	17.06	14.71	11.69	10.11
$\chi_{\rm S}/{\rm cm}^3~{\rm mol}^{-1}$	6.93	6.94	7.28	5.30	5.89
τ/µsec	107	106	79	41	33
α	0.29	0.27	0.27	0.31	0.30

Fig. S4. Temperature dependence of the in-phase (χ ') and out-of-phase (χ '') components of the ac susceptibility ($H_{dc} = 0$ Oe and $H_{ac} = 3$ Oe) for 2.

Fig. S5. Frequency dependence of the in-phase (χ^2) component of the ac magnetic susceptibility for 2 under zero applied dc field. Solid curves represent theoretical calculations on the basis of the generalized Debye model.³

Fig. S6. Plot of inverse temperature versus the natural log of the relaxation time for 2 and the red line corresponds to a fit to the Arrhenius expression.

Fig. S7. ¹H NMR spectra of ligand H₂L at 298 K.

Fig. S8. ${}^{13}C{}^{1}H$ NMR spectra of ligand H₂L at 298 K.

Compound	1	2
formula	$C_{120}H_{120}N_{12}O_{40}Cl_5Zn_4Gd_7$	$C_{120}H_{120}N_{12}O_{40}Cl_5Zn_4Dy_7$
Mr (g/mol)	3909.75	3946.50
cryst syst	Triclinic	Triclinic
Space group	P 1	P 1
a/Å	16.0223(13)	16.2712(8)
b/Å	19.4348(14)	16.3688(9)
c/Å	27.978(2)	27.8061(13)
α/°	71.9570(10)	72.1550(10)
β/°	75.9180(10)	75.1570(10)
$\gamma/^{\circ}$	66.9010(10)	66.4450(10)
$V/Å^3$]	7545.4(10)	7556.2(6)
T/K	177	177
Z	2	2
$\rho_{calcd}/(g \text{ cm}^{-3})$	1.721	1.735
μ (Mo-K α)/(mm ⁻	3.815	4.198
¹)		
F(000)	3794	3822
Data collected	41093	38618
Unique data	28920	26314
R _{int}	0.0436	0.0345
$R_1 [I > 2\sigma(I)]$	0.0592	0.0563
R ₁ (all data)	0.1047	0.1689
$\omega R [I > 2\sigma(I)]$	0.1376	0.0768
ωR_2 (all data)	0.1516	0.1807
GOF S	0.992	1.034

 Table S4. Crystallographic data and refinement parameters for compounds 1 and 2.

	1		2	
Bond lengths (Å)				
Zn(1)-N(1)	2.055(7)	Zn(1)-N(1)	2.066(9)	
Zn(1)- $Cl(2)$	2.245(3)	Zn(1)- $Cl(2)$	2.230(3)	
Zn(1)-O(2)	2.011(6)	Zn(1)-O(2)	2.035(7)	
Zn(1)-O(3)	2.118(7)	Zn(1)-O(3)	2.093(7)	
Zn(1)-O(30)	2.082(7)	Zn(1)-O(30)	2.051(7)	
Zn(2)-N(3)	2.086(7)	Zn(2)-N(3)	2.031(9)	
Zn(2)-Cl(1)	2.246(3)	Zn(2)-Cl(1)	2.242(3)	
Zn(2)-O(8)	2.030(6)	Zn(2)-O(8)	2.011(7)	
Zn(2)-O(9)	2.106(7)	Zn(2)-O(9)	2.136(8)	
Zn(2)-O(29)	2.064(6)	Zn(2)-O(29)	2.095(7)	
Zn(3)-N(6)	2.078(7)	Zn(3)-N(6)	2.055(9)	
Zn(3)-Cl(3)	2.240(4)	Zn(3)-Cl(3)	2.239(3)	
Zn(3)-O(17)	2.018(6)	Zn(3)-O(17)	2.025(7)	
Zn(3)-O(18)	2.109(6)	Zn(3)-O(18)	2.115(7)	
Zn(3)-O(36)	2.077(5)	Zn(3)-O(36)	2.083(7)	
Zn(4)-N(5)	2.071(8)	Zn(4)-N(5)	2.050(9)	
Zn(4)-Cl(4)	2.251(3)	Zn(4)- $Cl(4)$	2.247(3)	
Zn(4)-O(14)	2.016(6)	Zn(4)-O(14)	2.025(7)	
Zn(4)- O(15)	2.113(6)	Zn(4)- O(15)	2.128(7)	
Zn(4)- O(35)	2.089(5)	Zn(4)- O(35)	2.071(6)	
Gd(1)-O(6)	2.343(7)	Dy(1)-O(6)	2.323(7)	
Gd(1)-O(12)	2.350(6)	Dy(1)-O(12)	2.331(7)	
Gd(1)-O(21)	2.344(5)	Dy(1)-O(21)	2.324(7)	
Gd(1)-O(24)	2.353(6)	Dy(1)-O(24)	2.316(7)	
Gd(1)-O(31)	2.381(5)	Dy(1)-O(31)	2.358(6)	
Gd(1)-O(32)	2.366(6)	Dy(1)-O(32)	2.345(7)	
Gd(1)-O(33)	2.357(5)	Dy(1)-O(33)	2.336(7)	
Gd(1)-O(34)	2.370(6)	Dy(1)-O(34)	2.334(6)	
Gd(2)-O(3)	2.321(6)	Dy(2)-O(3)	2.289(7)	
Gd(2)-O(4)	2.496(5)	Dy(2)-O(4)	2.486(7)	
Gd(2)-O(5)	2.478(6)	Dy(2)-O(5)	2.403(6)	
Gd(2)-O(9)	2.300(7)	Dy(2)-O(9)	2.290(7)	
Gd(2)-O(10)	2.507(6)	Dy(2)-O(10)	2.478(7)	
Gd(2)-O(11)	2.426(5)	Dy(2)-O(11)	2.447(6)	
Gd(2)-O(29)	2.340(6)	Dy(2)-O(29)	2.296(7)	
Gd(2)-O(30)	2.317(7)	Dy(2)-O(30)	2.330(7)	
Gd(3)-N(2)	2.474(7)	Dy(3)-N(2)	2.414(8)	
Gd(3)-O(5)	2.365(5)	Dy(3)-O(5)	2.340(7)	
Gd(3)-O(6)	2.348(6)	Dy(3)-O(6)	2.337(7)	
Gd(3)-O(8)	2.352(7)	Dy(3)-O(8)	2.316(7)	
Gd(3)-O(25)	2.440(6)	Dy(3)-O(25)	2.414(8)	

Table S5. Selected bond lengths (Å) and angles (°) for compounds 1 and 2.

Gd(3)-O(29)	2.395(6)	Dy(3)-O(29)	2.352(6)
Gd(3)-O(31)	2.414(6)	Dy(3)-O(31)	2.290(7)
Gd(3)-O(32)	2.391(6)	Dy(3)-O(32)	2.501(7)
Gd(4)-N(7)	2.428(7)	Dy(4)-N(7)	2.451(9)
Gd(4)-O(17)	2.344(6)	Dy(4)-O(17)	2.311(6)
Gd(4)-O(20)	2.385(6)	Dy(4)-O(20)	2.343(7)
Gd(4)-O(21)	2.360(6)	Dy(4)-O(21)	2.342(7)
Gd(4)-O(26)	2.520(8)	Dy(4)-O(26)	2.412(8)
Gd(4)-O(33)	2.489(7)	Dy(4)-O(33)	2.372(6)
Gd(4)-O(34)	2.331(5)	Dy(4)-O(34)	2.346(7)
Gd(4)- O(36)	2.396(6)	Dy(4)-O(36)	2.365(7)
Gd(5)-N(8)	2.490(7)	Dy(5)-N(8)	2.406(9)
Gd(5)-O(14)	2.356(6)	Dy(5)-O(14)	2.294(7)
Gd(5)-O(23)	2.390(6)	Dy(5)-O(23)	2.349(6)
Gd(5)-O(24)	2.358(6)	Dy(5)-O(24)	2.311(7)
Gd(5)-O(27)	2.423(7)	Dy(5)-O(27)	2.411(8)
Gd(5)-O(33)	2.362(5)	Dy(5)-O(33)	2.308(6)
Gd(5)-O(34)	2.419(6)	Dy(5)-O(34)	2.465(7)
Gd(5)-O(35)	2.400(5)	Dy(5)-O(35)	2.352(6)
Gd(6)-O(15)	2.322(6)	Dy(6)-O(15)	2.290(7)
Gd(6)-O(18)	2.338(6)	Dy(6)-O(18)	2.301(6)
Gd(6)-O(19)	2.498(6)	Dy(6)-O(19)	2.487(7)
Gd(6)-O(20)	2.424(6)	Dy(6)-O(20)	2.427(6)
Gd(6)-O(22)	2.498(6)	Dy(6)-O(22)	2.478(7)
Gd(6)-O(23)	2.446(5)	Dy(6)-O(23)	2.411(7)
Gd(6)-O(35)	2.332(7)	Dy(6)-O(35)	2.297(7)
Gd(6)-O(36)	2.319(6)	Dy(6)-O(36)	2.292(7)
Gd(7)-N(4)	2.448(7)	Dy(7)-N(4)	2.437(8)
Gd(7)-O(2)	2.347(6)	Dy(7)-O(2)	2.324(7)
Gd(7)-O(11)	2.370(6)	Dy(7)-O(11)	2.334(6)
Gd(7)-O(12)	2.363(6)	Dy(7)-O(12)	2.327(7)
Gd(7)-O(28)	2.471(7)	Dy(7)-O(28)	2.391(7)
Gd(7)-O(30)	2.399(6)	Dy(7)-O(30)	2.359(6)
Gd(7)-O(31)	2.333(6)	Dy(7)-O(31)	2.388(7)
Gd(7)-O(32)	2.490(7)	Dy(7)-O(32)	2.343(7)
$Gd(1)\cdots Gd(3)$	3.6652(7)	$Dy(1)\cdots Dy(3)$	3.6152(10)
$Gd(1)\cdots Gd(4)$	3.6524(7)	$Dy(1)\cdots Dy(4)$	3.6356(9)
$Gd(1)\cdots Gd(5)$	3.6703(7)	$Dy(1)\cdots Dy(5)$	3.6036(6)
$Gd(1)\cdots Gd(7)$	3.6659(7)	$Dy(1)\cdots Dy(7)$	3.6286(6)
$Gd(2)\cdots Gd(3)$	3.8348(10)	$Dy(2)\cdots Dy(3)$	3.7511(7)
$Gd(2)\cdots Gd(7)$	3.7978(7)	Dy(2)Dy(7)	3.799(1)
Gd(3)···Gd(7)	4.3401(9)	Dy(3)Dy(7)	4.2800(7)
$Gd(4)\cdots Gd(5)$	4.3313(9)	$Dy(4)\cdots Dy(5)$	4.2606(8)
Gd(4)…Gd(6)	3.8024(10)	Dy(4)Dy(6)	3.7962(6)

Gd(5)···Gd(6)	3.8255(7)	Dy(5)Dy(6)	3.7600(9)
O(31)····O(32)	1.526(7)	O(31)····O(32)	1.539(9)
O(33)····O(34)	1.502(9)	O(33)····O(34)	1.514(9)
	Bond ar	ngles (°)	
Gd(1)-O(6)-Gd(3)	102.7(2)	Dy(1)-O(6)-Dy(3)	101.8(3)
Gd(1)-O(31)-Gd(3)	99.7(2)	Dy(1)-O(31)-Dy(3)	102.1(3)
Gd(1)-O(32)-Gd(3)	100.8(2)	Dy(1)-O(32)-Dy(3)	96.4(3)
Gd(1)-O(21)-Gd(4)	101.9(2)	Dy(1)-O(21)-Dy(4)	102.4(3)
Gd(1)-O(33)-Gd(4)	97.8(2)	Dy(1)-O(33)-Dy(4)	101.1(3)
Gd(1)-O(34)-Gd(4)	102.0 (2)	Dy(1)-O(34)-Dy(4)	102.0(3)
Gd(1)-O(24)-Gd(5)	102.4(2)	Dy(1)-O(24)-Dy(5)	102.3(2)
Gd(1)-O(33)-Gd(5)	102.1 (2)	Dy(1)-O(33)-Dy(5)	101.8(2)
Gd(1)-O(34)-Gd(5)	100.1(2)	Dy(1)-O(34)-Dy(5)	97.3(2)
Gd(1)-O(12)-Gd(7)	102.1 (2)	Dy(1)-O(12)-Dy(7)	102.3(3)
Gd(1)-O(31)-Gd(7)	102.1(2)	Dy(1)-O(31)-Dy(7)	99.7(3)
Gd(1)-O(32)-Gd(7)	98.0(2)	Dy(1)-O(32)-Dy(7)	101.4(2)
Gd(2)-O(5)-Gd(3)	104.7(19)	Dy(2)-O(5)-Dy(3)	104.5(2)
Gd(2)-O(29)-Gd(3)	108.2(2)	Dy(2)-O(29)-Dy(3)	107.6(3)
Gd(2)-O(11)-Gd(7)	104.69(19)	Dy(2)-O(11)-Dy(7)	105.2(2)
Gd(2)-O(30)-Gd(7)	107.3(2)	Dy(2)-O(30)-Dy(7)	108.2(3)
Gd(3)-O(31)-Gd(7)	132.2 (2)	Dy(3)-O(31)-Dy(7)	132.4(3)
Gd(3)-O(32)-Gd(7)	125.5(2)	Dy(3)-O(32)-Dy(7)	124.1(3)
Gd(4)-O(33)-Gd(5)	126.5(3)	Dy(4)-O(33)-Dy(5)	131.1(3)
Gd(4)-O(34)-Gd(5)	131.5(3)	Dy(4)-O(34)-Dy(5)	124.6(3)
Gd(4)-O(20)-Gd(6)	104.5(2)	Dy(4)-O(20)-Dy(6)	105.5(3)
Gd(4)-O(36)-Gd(6)	107.5(3)	Dy(4)-O(36)-Dy(6)	109.2(3)
Gd(5)-O(23)-Gd(6)	104.6(2)	Dy(5)-O(23)-Dy(6)	104.3(2)
Gd(5)-O(35)-Gd(6)	107.9(3)	Dy(5)-O(35)-Dy(6)	107.7(3)

References

- 1 a) I. D. Brown and D. Altermart, *Acta Crystallogr. Sec. B*: 1985, **41**, 244; b) N. E. Brese and M. O'Keeffe, *Acta Crystallogr. Sec. B*: 1991, **47**, 192.
- 2 D. Casanova, M. Llunell, P. Alemany and S. Alvarez, Chem. Eur. J., 2005, 11, 1479.
- 3 S. M. J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K Acta Crystallogr. Sec. B:. Folting, L.-C. Brunel, A. L. Rheingold, G. Christou and D. N. Hendrickson, *Inorg. Chem.*, 1999, **38**, 5329.