A folded [2×2] metallosupramolecular grid from a bis-tridentate (1,2,3-triazol-4-yl)-picolinamide (tzpa) ligand

Dawn E. Barry,^{a*} Chris S. Hawes,^{a*} Joseph P. Byrne^a, Bjørn la Cour Poulsen^a, Manuel Ruether^b, John E. O'Brien^b and Thorfinnur Gunnlaugsson^{a*}

^aSchool of Chemistry and Trinity Biomedical Science Institute, The University of Dublin,

Trinity College Dublin, Dublin 2, Ireland.

^bSchool of Chemistry, The University of Dublin, Trinity College Dublin, Dublin 2, Ireland

Supporting Information

Additional UV-Visible and Fluorescence Spectra and fitting	2
NMR Titration and VT-NMR Figures	3
T ₁ parameters and DOSY NMR Spectra	4
Mass Spectrometry	5
Computational Data	6
¹ H, ¹³ C, ¹⁹ F and 2-dimensional NMR spectra	11
References	17

Additional UV-Visible and Fluorescence Spectra and fitting

Figure S1. (a) Speciation distribution diagram obtained from UV-visible absorption titration data fit and (b) fit of experimental binding isotherms using the nonlinear regression analysis program ReactLab Equilibria.

Figure S2. (a) The overall changes in the fluorescence emission spectra upon titrating 1 (1 x 10^{-5} M) against Zn(ClO₄)₂.6H₂O (0 \rightarrow 5equiv.) in CH₃CN at RT and (b) corresponding experimental binding isotherm at $\lambda = 350$ nm.

NMR Titration and VT-NMR Figures

Figure S3. ¹H NMR titration of **1** (1 x 10^{-3} M) with Zn^{II} from 0 - 5 equiv. in CD₃CN.

Figure S4. ¹H NMR spectrum of $[Zn_4(1)_4]^{8+}$ (assembled *in situ* in CD₃CN) at 25 °C, 20 °C, 0 °C, -10 °C and -20 °C.

T₁ Data Table and DOSY Spectra

Table S1. ¹H NMR assignment for **1** and re-dissolved $[Zn_4(1)_4]^{8+}$ in CD₃CN and associated T_1 relaxation times. Uncertainties presented at 95% confidence level.

	Liga	nd 1	[Zn ₄ (1) ₄] complex				
Proton label	ppm	<i>T</i> ₁ (s)	ppm	<i>T</i> ₁ (s)			
а	3.83	0.56(1)	3.86	1.4(2)			
b	7.97	2.55(4)	7.94	2.83(9)			
С	7.41	2.24(3)	7.30	2.26(7)			
d	5.65	1.1(2)	5.61	0.64(3)			
е	8.40	1.79(4)	8.72	2.07(13)			
f	8.13	2.24(4)	8.29	1.60(7)			
g	7.86	2.01(3)	8.54	1.33(5)			
h	7.86	2.01(3)	8.24	0.96(4)			
i	8.74	0.59(3)	9.22	0.49(2)			
j	4.56	0.57(1)	4.59	0.37(4)			
k	7.27	1.30(5)	7.60	1.83(10)			
I.	7.27	1.30(5)	7.30	2.26(8)			
m	7.20	1.68(2)	7.21	1.68(4)			

Figure S5 Comparison of DOSY NMR spectra for ligand 1 (left) and $[Zn_4(1)_4]^{8+}$ (right)

Mass Spectrometry

Figure S6 Electrospray mass spectrum (positive ionisation mode) for $[Zn_4(1)_4]^{8+}$

Figure S7 Enlarged regions corresponding to the identified complex fragments listed in Figure S9, comparing measured data (black) to simulated isotopic distribution (red, or red/blue in the case of two overlapping fragments for $[M+L+ClO_4]^+/[2M+2L+2ClO_4]^{2+}$).^{S1}

Computational Data and Figures

Geometry optimized structures of $[Zn_4(1)_4]^{8+}$ were calculated from the crystal structure with the semiempirical method PM3 using Gaussian Software.^{S2} The optimization in acetonitrile was carried out with polarizable continuum model (PCM).

Figure S8 Comparison of the X-ray crystal structure (left), energy-minimized structure in MeCN (middle) and energy-minimized structure in vacuum (right). All structures are presented without pendant benzyl groups for clarity and/or to simply geometry optimization calculation.

Atom	x	У	z	Atom	x	у	z	Atom	x	у	z
С	15.238	-3.099	2.679	С	1.327	-13.554	3.299	н	-3.200	15.419	3.761
С	-15.238	3.099	2.679	С	-15.225	-3.167	-2.678	Н	3.199	-15.419	3.760
с	3.099	15.238	-2.679	с	15.225	3.167	-2.678	N	14.151	-2.141	2.392
с	-3.099	-15.238	-2.679	с	-3.167	15.224	2.678	N	-14.151	2.141	2.392
с	13.559	-1.266	3.299	с	3.167	-15.224	2.678	N	2.141	14.151	-2.392
с	-13.559	1.266	3.299	н	-3.769	8.175	-1.832	N	-2.141	-14.151	-2.392
с	1.266	13.559	-3.299	н	3.769	-8.175	-1.832	N	13.602	-1.987	1.161
с	-1.266	-13.559	-3.299	н	8.175	3.769	1.832	N	-13.602	1.987	1.161
с	12.614	-0.567	2.544	н	-8.175	-3.769	1.832	N	1.987	13.602	-1.161
с	-12.614	0.567	2.544	н	-8.192	3.732	-1.832	N	-1.987	-13.602	-1.161
с	0.567	12.614	-2.544	н	8.192	-3.732	-1.832	N	12.694	-1.065	1.229
с	-0.567	-12.614	-2.544	н	3.732	8.192	1.832	N	-12.694	1.065	1.229
с	11.668	0.494	2.866	н	-3.732	-8.192	1.832	N	1.065	12.694	-1.229
с	-11.668	-0.494	2.866	н	13.823	-1.182	4.361	N	-1.065	-12.694	-1.229
с	-0.494	11.668	-2.866	н	-13.823	1.182	4.361	N	-0.940	10.899	-1.816
с	0.494	-11.668	-2.866	н	1.182	13.823	-4.361	N	0.940	-10.899	-1.816
с	11.535	1.051	4.145	н	-1.182	-13.823	-4.361	N	10.899	0.940	1.816
с	-11.535	-1.051	4.145	н	12.158	0.686	4.975	N	-10.899	-0.940	1.816
с	-1.051	11.535	-4.145	н	-12.158	-0.686	4.975	N	-3.272	8.170	-0.963

Table S2: Coordinates for $[Zn_4(1)_4]^{8+}$ in vacuum; PM3

с	1.051	-11.535	-4.145	н	-0.686	12.158	-4.975	N	3.272	-8.170	-0.963
С	-2.076	10.612	-4.342	н	0.686	-12.158	-4.975	N	8.170	3.272	0.963
С	2.076	-10.612	-4.342	н	-2.531	10.499	-5.336	N	-8.170	-3.272	0.963
С	10.612	2.076	4.342	н	2.531	-10.499	-5.336	N	-8.185	3.234	-0.963
С	-10.612	-2.076	4.342	н	10.499	2.531	5.336	N	8.185	-3.234	-0.963
С	-2.527	9.839	-3.272	н	-10.499	-2.531	5.336	N	3.234	8.185	0.963
С	2.527	-9.839	-3.272	н	-3.342	9.112	-3.414	N	-3.234	-8.185	0.963
С	9.839	2.527	3.272	н	3.342	-9.112	-3.414	N	-10.903	0.891	-1.816
С	-9.839	-2.527	3.272	н	9.112	3.342	3.414	N	10.903	-0.891	-1.816
С	-1.943	9.995	-2.009	н	-9.112	-3.342	3.414	N	0.891	10.903	1.816
С	1.943	-9.995	-2.009	н	-2.500	5.520	-1.083	Ν	-0.891	-10.903	1.816
С	9.995	1.943	2.009	н	2.500	-5.520	-1.083	N	-12.690	-1.122	-1.228
С	-9.995	-1.943	2.009	н	5.520	2.500	1.083	Ν	12.690	1.122	-1.228
С	-2.361	9.216	-0.789	н	-5.520	-2.500	1.083	Ν	-1.122	12.690	1.228
С	2.361	-9.216	-0.789	н	-3.245	3.231	-1.658	N	1.122	-12.690	1.228
С	9.216	2.361	0.789	н	3.245	-3.231	-1.658	N	-13.593	-2.049	-1.161
С	-9.216	-2.361	0.789	н	3.231	3.245	1.657	N	13.593	2.049	-1.161
С	-3.946	7.472	0.163	н	-3.231	-3.245	1.658	N	-2.049	13.593	1.161
С	3.946	-7.472	0.163	н	-5.531	2.475	-1.083	N	2.049	-13.593	1.161
С	7.472	3.946	-0.163	н	5.531	-2.475	-1.083	N	-14.141	-2.205	-2.392
с	-7.472	-3.946	-0.163	н	2.475	5.531	1.083	N	14.141	2.205	-2.392
С	-4.412	6.104	-0.248	н	-2.475	-5.531	1.083	N	-2.205	14.141	2.392
С	4.412	-6.104	-0.248	н	-6.414	6.385	0.527	Ν	2.205	-14.141	2.392
С	6.104	4.412	0.248	н	6.414	-6.385	0.527	0	-1.858	9.454	0.317
С	-6.104	-4.412	0.248	н	6.385	6.414	-0.527	0	1.858	-9.454	0.317
С	-3.528	5.213	-0.859	н	-6.385	-6.414	-0.527	0	9.454	1.858	-0.317
С	3.528	-5.213	-0.858	н	-9.126	3.300	-3.413	0	-9.454	-1.858	-0.317
С	5.213	3.528	0.858	Н	9.126	-3.300	-3.413	0	-9.463	1.815	0.317
С	-5.213	-3.528	0.858	н	3.300	9.126	3.413	0	9.463	-1.815	0.317
С	-3.941	3.924	-1.172	Н	-3.300	-9.126	3.413	0	1.815	9.463	-0.317
с	3.941	-3.924	-1.172	н	-10.510	2.484	-5.336	0	-1.815	-9.463	-0.317
с	3.924	3.941	1.172	н	10.510	-2.484	-5.336	Zn	11.376	0.026	0.000
с	-3.924	-3.941	1.172	н	-2.484	-10.510	5.336	Zn	-11.376	-0.026	0.000
С	-5.229	3.504	-0.858	н	2.484	10.510	5.336	Zn	-0.026	11.376	0.000
с	5.229	-3.504	-0.858	н	-12.161	0.631	-4.975	Zn	0.026	-11.376	0.000
с	3.504	5.229	0.858	н	12.161	-0.631	-4.975	н	-8.108	4.758	0.532
С	-3.504	-5.229	0.858	н	0.631	12.161	4.975	Н	8.108	-4.758	0.532
с	-6.124	4.384	-0.248	н	-0.631	-12.161	4.975	н	4.758	8.108	-0.532
С	6.124	-4.384	-0.248	Н	-13.818	-1.244	-4.360	Н	-4.758	-8.108	-0.532
С	4.385	6.124	0.248	Н	13.818	1.244	-4.360	Н	-14.953	-4.179	-2.339
С	-4.385	-6.124	0.248	Н	-1.244	13.818	4.360	Н	14.952	4.179	-2.340
С	-5.715	5.689	0.045	Н	1.244	-13.818	4.360	Н	-4.178	14.953	2.338
С	5.715	-5.689	0.045	Н	16.163	-2.808	2.155	Н	4.179	-14.953	2.339
С	5.689	5.715	-0.045	н	-16.163	2.808	2.156	Н	-16.154	-2.872	-2.165

С	-5.689	-5.715	-0.045	н	2.809	16.163	-2.155	н	16.154	2.873	-2.164
С	-7.489	3.912	0.163	н	-2.808	-16.163	-2.155	н	-2.872	16.154	2.166
с	7.489	-3.912	0.163	н	14.965	-4.114	2.351	н	2.873	-16.154	2.165
С	3.912	7.489	-0.163	Н	-14.965	4.114	2.350	Н	-15.419	-3.199	-3.761
с	-3.912	-7.489	-0.163	н	4.114	14.964	-2.352	н	15.420	3.198	-3.760
С	-9.226	2.319	-0.788	н	-4.114	-14.964	-2.352	С	11.540	-0.999	-4.145
с	9.226	-2.319	-0.788	н	15.441	-3.121	3.760	С	0.999	11.540	4.145
с	2.319	9.226	0.788	н	-15.441	3.121	3.760	С	-0.999	-11.540	4.145
с	-2.319	-9.226	0.788	н	3.120	15.442	-3.760	С	-11.670	0.441	-2.866
с	-10.003	1.898	-2.009	н	-3.121	-15.441	-3.760	С	11.670	-0.441	-2.866
с	10.003	-1.898	-2.009	н	-4.795	8.087	0.532	С	0.441	11.670	2.866
с	1.898	10.003	2.009	н	4.795	-8.087	0.532	С	-0.441	-11.670	2.866
с	-1.898	-10.003	2.009	н	8.087	4.795	-0.532	С	-12.612	-0.624	-2.544
С	-9.850	2.482	-3.272	н	-8.087	-4.795	-0.532	С	12.612	0.624	-2.544
с	9.850	-2.482	-3.272	н	-3.233	7.375	1.007	С	-0.624	12.612	2.544
с	2.482	9.850	3.272	н	3.233	-7.375	1.007	С	0.624	-12.612	2.544
с	-2.482	-9.850	3.272	н	7.375	3.233	-1.007	С	-13.554	-1.327	-3.299
с	-10.621	2.028	-4.342	н	-7.375	-3.233	-1.007	С	13.554	1.327	-3.299
с	10.621	-2.028	-4.342	н	-7.389	3.199	1.007	С	-1.327	13.554	3.299
С	2.028	10.621	4.342	н	7.389	-3.199	1.008	Н	-3.199	-7.389	-1.008
с	-2.028	-10.621	4.342	Н	3.199	7.389	-1.008	С	-11.540	0.999	-4.145

Table S3: Coordinates for $[Zn_4(1)_4]^{8+}$ in acetonitrile; PM3/PCM

Atom	x	у	z	Atom	x	У	z	Atom	x	у	z
С	-2.643	9.348	6.744	С	11.553	-0.921	-2.471	н	-14.005	-3.145	-1.346
С	3.030	-0.685	10.695	С	4.002	-8.787	7.441	н	13.759	0.581	-2.262
с	-7.642	-6.551	-7.575	с	-2.852	12.122	-1.451	N	-2.724	8.617	5.468
С	8.555	-0.677	-9.799	С	-13.228	-3.912	-1.473	N	3.036	-1.215	9.321
С	-3.666	7.655	5.122	С	12.952	1.212	-2.660	N	-7.442	-5.943	-6.249
С	3.835	-0.779	8.270	н	-5.393	-3.252	1.456	N	8.098	-0.295	-8.452
с	-6.675	-6.457	-5.211	н	4.661	2.484	-1.303	N	-1.839	8.805	4.453
С	7.238	0.750	-8.135	н	-3.933	3.784	-1.316	N	2.235	-2.237	8.920
С	-3.306	7.266	3.831	Н	3.871	-3.444	1.255	N	-8.014	-4.765	-5.883
с	3.474	-1.598	7.197	н	-3.035	-2.205	5.331	N	8.484	-0.955	-7.328
С	-6.809	-5.520	-4.183	н	2.969	5.063	2.243	N	-2.168	8.017	3.479
с	7.119	0.691	-6.745	н	-5.565	1.175	-5.049	N	2.479	-2.475	7.670
с	-3.865	6.298	2.895	н	5.296	-4.971	-3.252	N	-7.652	-4.501	-4.667
С	3.917	-1.665	5.810	н	-4.491	7.317	5.760	N	7.916	-0.386	-6.312
с	-6.248	-5.439	-2.840	н	4.570	0.032	8.326	N	-6.597	-4.321	-2.122
С	6.363	1.479	-5.780	н	-6.108	-7.394	-5.243	N	6.496	1.086	-4.471
С	-4.985	5.503	3.167	Н	6.782	1.437	-8.856	N	-3.206	6.199	1.694

С	4.902	-0.833	5.265	н	-5.506	5.594	4.129	N	3.290	-2.615	5.039
С	-5.398	-6.409	-2.294	н	5.401	-0.084	5.895	N	-6.109	-2.632	1.128
С	5.538	2.557	-6.126	н	-5.134	-7.301	-2.878	N	5.358	1.814	-1.041
С	-4.901	-6.218	-1.007	н	5.445	2.865	-7.175	N	-3.228	4.454	-1.552
С	4.843	3.222	-5.117	н	-4.235	-6.967	-0.559	Ν	3.228	-4.097	1.661
С	-5.420	4.600	2.198	н	4.193	4.071	-5.366	Ν	-2.190	-1.669	5.408
С	5.231	-0.973	3.918	н	-6.297	3.969	2.391	N	2.082	4.922	2.691
С	-5.245	-5.074	-0.289	н	5.996	-0.327	3.468	Ν	-5.277	0.215	-5.050
С	4.967	2.805	-3.793	н	-4.848	-4.905	0.725	Ν	5.053	-4.219	-3.869
С	-4.740	4.496	0.986	н	4.411	3.313	-2.989	Ν	0.003	-4.546	6.096
С	4.584	-1.930	3.139	н	-5.068	3.779	0.217	Ν	0.385	7.723	0.990
С	-6.101	-4.129	-0.867	н	4.827	-2.041	2.070	Ν	-8.380	-1.118	-3.580
с	5.805	1.726	-3.486	н	-4.431	-0.227	-0.115	Ν	8.176	-2.327	-3.321
С	-3.626	5.311	0.750	н	2.974	-0.270	-0.423	Ν	2.457	-5.696	6.597
С	3.611	-2.751	3.722	н	-0.829	2.305	-1.341	Ν	-1.836	9.223	0.343
С	-6.514	-2.850	-0.192	н	0.787	-2.578	0.255	Ν	-9.923	-3.149	-2.544
С	5.993	1.173	-2.102	н	-2.126	0.619	0.237	Ν	9.740	-0.067	-3.501
С	-2.806	5.275	-0.510	н	0.662	0.011	0.419	Ν	3.498	-6.423	6.859
С	2.839	-3.798	2.969	н	-0.695	-0.147	-1.722	Ν	-2.740	10.054	-0.074
С	-6.109	-1.286	1.754	н	0.603	-1.270	-1.842	Ν	-10.816	-3.965	-2.079
С	5.177	1.172	0.287	н	-1.114	0.597	2.502	Ν	10.626	0.879	-3.476
с	-2.357	4.105	-2.704	н	0.141	1.737	2.118	Ν	3.077	-7.691	7.106
с	2.325	-4.784	0.700	н	-2.106	-1.219	-3.458	Ν	-2.124	11.007	-0.822
с	-4.716	-0.774	1.961	н	1.925	-1.927	-3.845	Ν	-11.988	-3.285	-1.961
с	3.773	1.354	0.776	н	-4.739	-1.170	4.083	N	11.740	0.400	-2.861
с	-2.299	2.621	-2.903	н	4.287	2.988	2.094	0	-7.254	-2.039	-0.765
с	2.205	-3.996	-0.569	н	-3.718	2.646	-4.532	0	6.744	0.207	-1.893
С	-3.987	-0.260	0.886	н	3.553	-5.283	-1.660	0	-1.816	6.010	-0.650
С	2.756	0.518	0.311	н	-3.315	-4.033	5.618	0	1.924	-4.432	3.513
С	-1.450	1.840	-2.117	н	3.544	6.502	1.186	0	0.092	-1.902	5.370
С	1.369	-2.880	-0.625	н	-7.268	1.892	-4.677	0	-0.133	5.483	2.479
С	-2.699	0.220	1.088	н	6.982	-5.407	-2.550	0	-5.776	-1.804	-4.081
С	1.460	0.670	0.788	н	-3.361	-6.471	6.186	0	5.664	-2.067	-4.380
с	-1.382	0.468	-2.325	н	3.977	8.520	-0.231	Zn	-1.606	7.509	1.523
с	1.270	-2.147	-1.802	н	9.281	-5.608	-1.578	Zn	1.909	-3.738	6.104
С	-2.132	0.196	2.357	н	-9.636	2.504	-4.145	Zn	-7.917	-3.091	-3.148
с	1.169	1.651	1.730	н	-1.216	-7.670	6.689	Zn	7.818	-0.492	-4.219
С	-2.167	-0.134	-3.304	н	2.072	10.018	-0.877	Н	-3.526	0.414	-6.161
С	2.006	-2.516	-2.923	н	-11.197	0.763	-3.236	Н	3.221	-5.016	-4.470
С	-2.853	-0.315	3.436	Н	10.861	-3.664	-1.710	Н	4.724	-8.949	6.628
С	2.178	2.497	2.190	Н	1.101	-8.686	7.148	Н	-3.708	11.752	-2.035
С		0.644	4 000	l [_]	0.020	11 200	1 4 2 4	н	-13 062	-1 107	-0 505
	-3.016	0.641	-4.093	н	-0.029	11.590	-1.424		10.002	4.407	0.303
С	-3.016 2.838	-3.636	-4.093 -2.875	H H	-0.029	-1.208	-1.424	н	12.758	2.026	-1.946

С	3.482	2.341	1.717	Н	-2.561	10.431	6.571	н	-3.228	12.819	-0.687
С	-3.074	2.023	-3.896	н	3.544	-1.379	11.377	н	-13.591	-4.662	-2.191
С	2.924	-4.383	-1.700	Н	-8.693	-6.846	-7.712	Н	13.289	1.654	-3.609
С	-2.251	-0.316	4.810	Н	9.651	-0.616	-9.870	н	3.435	-9.716	7.595
с	1.871	3.551	3.212	н	-1.767	9.020	7.322	н	-2.180	12.671	-2.125
с	-3.821	-0.009	-5.179	н	2.002	-0.541	11.056	с	9.853	-3.600	-2.141
с	3.602	-4.042	-4.101	н	-7.372	-5.845	-8.374	с	-0.013	-5.887	6.401
с	-1.023	-2.430	5.487	н	8.249	-1.707	-10.037	С	0.613	8.825	0.200
с	1.046	5.712	2.179	н	-3.548	9.155	7.338	с	-9.680	-0.789	-3.280
с	-6.131	-0.651	-4.364	н	3.550	0.282	10.722	с	9.432	-2.422	-2.772
с	5.953	-3.147	-3.849	н	-7.012	-7.446	-7.670	С	1.291	-6.482	6.665
с	-1.160	-3.891	5.821	н	8.117	0.000	-10.546	С	-0.569	9.613	-0.129
с	1.416	6.902	1.337	н	-6.643	-1.391	2.721	с	-10.491	-1.879	-2.752
с	-7.529	-0.176	-4.075	н	5.907	1.639	0.981	С	10.253	-1.224	-2.885
с	7.310	-3.377	-3.243	н	-2.784	4.611	-3.595	С	1.694	-7.778	6.996
с	-2.383	-4.572	5.846	н	2.760	-5.787	0.511	С	-0.756	10.772	-0.885
с	2.719	7.175	0.902	н	-6.695	-0.568	1.145	С	-11.832	-1.967	-2.373
с	-7.966	1.138	-4.283	н	5.428	0.090	0.249	н	3.455	-3.311	-4.923
с	7.693	-4.568	-2.613	н	-1.334	4.513	-2.569	н	-2.879	0.298	5.489
с	-2.406	-5.930	6.160	н	1.322	-4.952	1.144	н	2.550	3.440	4.083
С	2.958	8.297	0.111	Н	-1.243	0.147	4.805	С	-1.217	-6.601	6.441
С	-9.285	1.477	-3.983	Н	0.838	3.445	3.601	С	1.903	9.132	-0.250
с	8.971	-4.676	-2.068	н	-3.617	-1.098	-5.229	С	-10.155	0.514	-3.479

Figure S10. ¹³C NMR (100 MHz, CD₃CN) spectrum of 1.

[mqq]

Figure S11. HSQC (400 MHz, CD₃CN) spectrum of 1.

Figure S12. HMBC (600 MHz, CD₃CN) spectrum of 1.

Figure S13. NHCOSY (600 MHz, CD₃CN) spectrum of 1.

Figure S14. ¹⁹F NMR spectrum of $[Zn_4.1_4]^{8+}$ assembled *in situ* from 1 and $Zn(BF_4)_2.xH_2O$.

Figure S15. ¹H NMR (400 MHz, CD₃CN) spectrum of isolated $[Zn_4(1)_4]^{8+}$ complex.

Figure S16. ¹³C NMR (100 MHz, CD₃CN) spectrum of isolated $[Zn_4(1)_4]^{8+}$ complex.

Figure S17. HSQC (600 MHz, CD₃CN) spectrum of isolated $[Zn_4(1)_4]^{8+}$ complex.

Figure S18. HMBC (600 MHz, CD₃CN) spectrum of isolated $[Zn_4(1)_4]^{8+}$ complex.

Figure S19. NHCOSY (600 MHz, CD₃CN) spectrum of isolated $[Zn_4(1)_4]^{8+}$ complex.

References

- S1 L. Patiny and A. Borel, J. Chem. Inf. Model. 2013, 53, 1223-1228.
- S2 Gaussian 09, Revision D.01, M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, T. Keith, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, and D. J. Fox, Gaussian, Inc., Wallingford CT, 2013.