Supporting Information

Syntheses and post-functionalization of tri-substituted polyalkoxo

hexavanadates containing tris(alkoxo) ligands

Xunliang Hu,ª Zicheng Xiao, *ª Bo Huang ª,Xiaokang Hu, ª Min Cheng,ª Xinjun Lin,ª Pingfan Wu, *ª Yongge Wei^{*a,b}

Figure S1. FT-IR spectrum measured for the solid sample of 1.

Figure S2. FT-IR spectrum measured for the solid sample of 2.

Figure S3. FT-IR spectrum measured for the solid sample of 3.

Figure S4. FT-IR spectrum measured for the solid sample of 4.

Figure S5. FT-IR spectrum measured for the solid sample of 5.

Figure S6. Differential Pulse Voltammetry spectra of 1 and 5.

Figure S7. Cyclic voltammogram spectrum of 2,3,4.

Table S1	Summarv	of BVS	calculations	for the	vanadium	atoms in	1 - :	5
	Sammary	01 0 1 0	eare aracrons	101 0110	, and an ann		-	•

1	2	3	4		5	
V1	V1	V1	V1 4.03	V1	3.990	V7
4.921	4.025	4.022			4.038	
V2	V2	V2	V2	V2	4.044	V8
4.110	4.091	4.036	4.056		4.048	
	V3		V3	V3	4.141	V9
	4.044		4.009		4.055	
	V4		V4 4.01	V4	4.988	V10
	3.977			4.931		
			V5	V5	5.002	V11
			4.026	5.082		
			V6	V6	4.981	V12
			4.051	4.973		

	1 (0.	66)	2	3	4		5
FWHE(eV)	1.85	2.10	1.96	2.20	2.14	1.79	2.05
2p3/2(eV)	515.85	517.1	515.76	515.7	515.9	515.75	516.95
FWHE(eV)	2.14	2.10	2.20	2.20	2.51	2.1	2.1
2p1/2(eV)	523.05	524.3	522.91	522.875	523	523.2	524.15

Table S2 Binding Energies (eV) for Compounds 1-5

Fig. S8 UV-vis spectra in water solution (1-4) and in acetonitrile (5).

Fig. S9 UV-vis DRS spectra of compounds 1-4.

Table S3	Details of crystal	data and structure	refinement for 1-5.
----------	--------------------	--------------------	---------------------

Identification	_	2	3	4	5	
code	1	2	3	4		
Empirical formula	$Na_2V_6N_3O_{28}C_{12}H_{42}$	$Na_2V_6O_{31}C_{15}H_{48}$	$C_{15}H_{30}N_3O_{19}V_6$	C18H52N2O23V6	$C_{114}H_{180}N_9NaO_{44}V_{12} \\$	
Formula weight	1028.09	1076.14	862.06	970.25416	3014.93	
Temperature/K	293 (2)	121.7	105(2)	105.6	106.6	
Crystal system	cubic	orthorhombic	hexagonal	monoclinic	triclinic	
Space group	<i>I23</i>	Pnnm	P63mc	P21/c	P-1	
a/Å	19.168(2)	10.2542(8)	12.9234(4)	9.9874(3)	17.3307(7)	
b/Å	19.168(2)	27.096(2)	12.9234(4)	26.3528(10)	17.3855(8)	
c/Å	19.168(2)	12.9530(10)	9.8515(3)	16.3613(4)	32.3235(12)	
α /°	90	90	90	90	90.823(3)	
β/°	90	90	90	127.6200(10)	100.203(4)	
γ /°	90	90	120	90	119.450(5)	
Volume/Å ³	7042(2)	3599.0(5)	1424.91(11)	3410.86(18)	8287.9(7)	
Z	8	4	2	4	2	
$\rho_{calc}g/cm^3$	1.724	1.955	2.009	1.86	1.208	
μ / mm^{-1}	1.631	1.627	1.975	1.67	0.713	
F (000)	3624.0	2108	862	1916	3132	
Crystal size/mm ³	$0.30 \times 0.25 \times 0.25$	$0.30 \times 0.25 \times 0.02$	$0.20 \times 0.12 \times 0.05$	$0.20\times0.20\times0.17$	$0.140 \times 0.130 \times 0.050$	
Radiation MoK α	$(\lambda = 0.71073)$	$(\lambda = 0.7107)$	$(\lambda = 0.71073)$	$(\lambda = 0.7107)$	$(\lambda = 0.71073)$	

2⊖ range for data collection/°	3.004 to 52.544	5.9 to 52	6.3 to 52	6 to 51.98	6.272 to 52
Index ranges	$\begin{array}{l} -23 \ \leqslant \ h \ \leqslant \ 23, \\ -23 \ \leqslant \ k \ \leqslant \ 23, \\ -23 \ \leqslant \ 1 \ \leqslant \ 23 \end{array}$	$-8 \le h \le 12$, $-22 \le k \le 33$, $-14 \le 1 \le 15$	$-9 \le h \le 15$, $-15 \le k \le 15$, $-12 \le l \le 12$	$-12 \le h \le 12,$ $-32 \le k \le 32,$ $-20 \le l \le 20$	$-21 \le h \le 21$, $-18 \le k \le 21$, $-39 \le 1 \le 39$
Reflections collected	27422	13506	6521	33983	76443
Independent reflections	2403 [R _{int} = 0.1000, R <i>sigma</i> = 0.0442]	3697 [R <i>int</i> = 0.0892, Rsigma = 0.0907]	1064 [R <i>int</i> = 0.0426, Rsigma = 0.0276]	6697 [R <i>int</i> = 0.0420, R <i>sigma</i> = 0.0312]	32532 [R <i>int</i> = 0.0891, R <i>sigma</i> = 0.1677]
Data/restra <i>int</i> s/pa rameters	2403/2/136	3697/0/294	1064/1/83	6697/0/446	32532/71/1676
Goodness-of-fit on F^2	1.075	1.082	1.083	1.051	0.910
Final R indexes [I>=2σ (I)]	$R_1 = 0.0386$, $wR_2 = 0.0967$	R1= 0.0895, wR2= 0.2013	R1= 0.0268, wR2= 0.0724	R1= 0.0353, wR2= 0.0895	R1= 0.0735, wR2= 0.1682
Final R indexes [all data]	R ₁ =0. 0549, wR ₂ = 0. 1061	R1= 0.1208, wR2= 0.2191	R1= 0.0284, wR2= 0.0734	R1= 0.0387, wR2= 0.0918	R1= 0.1375, wR2= 0.1935
Largest diff. peak/hole / e Å ⁻³	0.46/-0.32	1.42/-1.19	0.61/-0.30	0.70/-0.56	1.46/-0.49

1 #395-460 RT: 0.92-1.07 AV: 66 SB: 67 0.27-0.34 , 0.27-0.34 NL: 6.22E7 T: FTMS - p ESI Full ms [133.40-2000.00]

Fig. S10 ESI mass spectrum of compound 1.

Fig. S11 ESI mass spectrum of compound 2.

Fig. S12 ESI mass spectrum of compound 3.

Fig. S13 ESI mass spectrum of compound 4.

Fig. S14 ESI mass spectrum of compound 5.

Fig. S15 TGA curve of compound 1.

Fig. S16 TGA curve of compound 2.

Fig. S18 ORTEP drawing of the cluster anions of 1

Fig.S19 Center symmetrical structure through sodium ions of 5.

Fig.S20 PXRD and SCXRD analysis of 5.