Supporting Information for

A dual-signal sensing system based on organic dyes-LDHs film for fluorescence detection of cysteine

Mingzhe Li Yanyan Fu and Lan Jin*

State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China

* Corresponding author. Tel: +86-10-64412131; Fax: +86-10-64425385.

E-mail address: jinlan@mail.buct.edu.cn (Lan Jin).

Fig. S1 SEM images of (A) MgAl-CO₃-LDH and (B) MgAl-NO₃-LDH; (C) XRD patterns of MgAl-CO₃ LDH (a) and MgAl-NO₃ LDH (b); (D) The digital picture of MgAl-NO₃ colloidal suspension.

Fig. S2 UV-vis absorption spectrum of (A) calcein and (B) NFR solution (inset: solution colors under daylight (left) and UV light (right), respectively).

Fig. S3 The fluorescence intensity change of (A) (calcein@NFR/LDH)₂₀ UTFs and calcein solution; (B) (calcein@NFR/LDH)₂₀ UTFs and NFR solution after exposure of ultraviolet lamp.

Fig. S4 (A) Fluorescence spectra of calcein-Cu²⁺ solution in Tris-HCl buffer of pH=6, *C* calcein= 1.0×10^{-4} M; The concentration of Cu²⁺: 0.0, 1.0, 2.0, 4.0, 8.0, 12.0, 24.0, 50.0×10⁻⁶ M, respectively; (B) Fluorescence spectra of calcein-Cu²⁺solution in the presence of Cys (1-7: 0.0, 2.0, 4.0, 10.0, 20.0, 40.0, 100.0×10⁻⁴ M). All samples were tested with λ_{ex} =490 nm, slit width of 3nm; (C) The calcein solution, calcein-Cu²⁺ solution and calcein-Cu²⁺solution in the presence of Cys under 365 nm UV illumination.

Fig. S5 (A) Fluorescence spectra of NFR-Cu²⁺ solution in Tris-HCl buffer of pH=6, C_{NFR} = 1.0×10^{-4} M; The concentration of Cu²⁺: 0.0, 2.0, 4.0, 8.0, 12, 24, 48, 100×10^{-6} M; (B) Fluorescence spectra of NFR-Cu²⁺solution in the absence and presence of Cys in Tris-HCl buffer of pH=6. Cys (1–9): 0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 20.0×10^{-4} M. All samples was tested with λ_{ex} =490 nm, slit width of 5 nm; (C) The pure NFR solution, NFR-Cu²⁺ solution and NFR-Cu²⁺solution in the presence of L-cysteine under 365 nm UV illumination.

Fig. S6 Tapping-mode AFM images of (a) $(\text{calcein}@NFR/LDH)_{20}$ UTFs, (b) $(\text{calcein}@NFR/LDH)_{20}$ UTFs after interaction with Cu²⁺ and (c) UTFs-Cu²⁺ complex after interaction with Cys; Confocal fluorescent microscopy images of (d) $(\text{calcein}@NFR/LDH)_{20}$ UTFs, (e) $(\text{calcein}@NFR/LDH)_{20}$ UTFs after interaction with Cu²⁺ and (f) UTFs-Cu²⁺ complex after interaction with Cys. (the concentration of Cu²⁺ is 4.8×10^{-6} M, Cys is 1.2×10^{-6} M)

Table S1 The fluorescence intensity changes of $(calcein@NFR/LDH)_{20}$ UTF-Cu²⁺ system upon addition of Cys, Hcy, GSH and Na₂S.

Substances	F/F ₀ (520nm)	F/F ₀ (607nm)
Cys	2.30	4.89
Нсу	1.62	2.47
GSH	1.48	2.35
Na ₂ S	1.35	1.52