Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information for:

A Cobalt-Nitrosyl Complex with a Hindered Hydrotris(pyrazolyl)borate Coligand: Detailed Electronic Structure, and Reactivity towards Dioxygen

Kiyoshi Fujisawa,^{*,a} Shoko Soma,^a Haruka Kurihara,^a Hai T. Dong,^b Max Bilodeau,^b and Nicolai Lehnert^{*,b}

^a Department of Chemistry, Ibaraki University, Mito 310-8512, Japan

^b Department of Chemistry and Department of Biophysics, University of Michigan, 930 N. University

Avenue, Ann Arbor, Michigan, 48109, United States

Table S1	X-ray crystallographic data for [Co(NO)(L3)], [Co(η^2 -O ₂ N)(L3)],	
	and $[Co(\eta^2-O_2NO)(L3)]$	S2
Figures S1-S2	IR spectra of [Co(NO)2(tmeda)](BPh4) and [Co(NO)(L3)]	S3
Figure S3	Far-IR spectra of [Co(NO)(L3)]	S4
Figure S4	IR spectra of $[Co(\eta^2-O_2N)(L3)]$ and $[Co(\eta^2-O_2NO)(L3)]$	S4
Figure S5	UV-Vis and DR spectra of [Co(NO)(L3)]	S5
Figure S6	UV-Vis spectra of $[Co(\eta^2-O_2N)(L3)]$ and $[Co(\eta^2-O_2NO)(L3)]$	S5
Figure S7	¹ H-NMR spectrum of [Co(NO)(L3)]	S6
Figure S8	¹ H-NMR spectrum of [$Co(\eta^2-O_2N)(L3)$]	S6
Figure S9	¹ H-NMR spectrum of [Co(η^2 -O ₂ NO)(L3)]	S6
Figure S10	IR spectral changes by the reaction of O_2 in the solution state	S7
Figure S11	UV-Vis spectral changes by the reaction of O ₂ in the solution state	S7
Figure S12	UV-Vis spectral comparisons	S 8
Figure S13	IR spectral changes by the reaction of O ₂ in the solid state	S 8
Figure S14	¹ H-NMR spectrum after the reaction of $[Co(NO)(L3)]$ with O ₂ in the solution	S9
Figure S15	¹ H-NMR spectrum after the reaction of $[Co(NO)(L3)]$ with O ₂ in the solid	S9
Table S2	MO charge distributions for [Co(NO)(L0)] (B3LYP/TZVP)	S10
Tables S3-S4	Coordinates of the fully optimized structure of [Co(NO)(L0)]	S11-S12

	[Co(NO)(L3)]	$[Co(\eta^2-O_2N)(L3)]$	$[Co(\eta^2 \text{-} O_2 NO)(L3)]$
CCDC deposit num.	1534553	1534554	1534555
Empirical formula	C30H52BCoN7O	C30H52BCoN7O2	C30H52BCoN7O3
Formula weight	596.53	612.53	628.53
Crystal system	Monoclinic	Monoclinic	Monoclinic
Space group	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 2 ₁ / <i>n</i> (No. 14)	<i>P</i> 2 ₁ / <i>m</i> (No. 11)
<i>a</i> /Å	9.5351(9)	9.4573(13)	9.4152(13)
b/Å	17.2416(19)	17.404(2)	17.442(2)
c /Å	20.421(2)	20.336(3)	10.6017(16)
eta /°	99.585(3)	100.603(3)	106.857(3)
$V/\text{\AA}^3$	3310.4(6)	3290.0(8)	1666.2(4)
Ζ	4	4	2
Dcalc /gcm ⁻³	1.197	1.237	1.253
R (int)	0.0309	0.0289	0.0315
μ (Mo K α) /cm ⁻¹	5.517	5.590	5.558
Reflections collected	53745	53446	27761
Unique reflections	7582	7548	3927
No. of variables	361	370	211
Reflections/para. ratio	21.00	20.40	18.61
$R(I > 2\sigma(I))$	0.0431	0.0303	0.0276
R (All reflections)	0.0592	0.0440	0.0311
$R_{\rm w}$ (All reflections)	0.1209	0.0752	0.0727
Good. of fit indicator	1.039	1.019	1.054
Max/min peak, /e Å ³	1.92 / -0.49	0.36 / -0.25	0.40 / -0.34

 $Table \ S1. \ X-ray \ crystallographic \ data \ for \ [Co(NO)(L3)], \ [Co(\eta^2-O_2N)(L3)], \ and \ [Co(\eta^2-O_2NO)(L3)].$

 $R = \Sigma ||Fo| - |Fc|| / \Sigma |Fo|; R_w = [(\Sigma w((Fo^2 - Fc^2)^2) / \Sigma w(Fo^2)^2]^{1/2}]$

Figure S1. IR spectra of [Co(NO)₂(tmeda)](BPh₄) (solid line) and [Co(¹⁵NO)₂(tmeda)](BPh₄) (dotted line).

Figure S2. IR spectra of [Co(NO)(L3)] (solid line) and [Co(¹⁵NO)(L3)] (dotted line).

Figure S3. Far-IR spectra of [Co(NO)(L3)] (solid line) and [Co(¹⁵NO)(L3)] (dotted line).

Figure S4. IR spectra of $[Co(\eta^2-O_2N)(L3)]$ (top) and $[Co(\eta^2-O_2NO)(L3)]$ (bottom).

Figure S5. UV-Vis (solid line) and diffuse reflectance (DR, dotted line) spectra of [Co(NO)(L3)].

Figure S6. UV-Vis spectra of $[Co(\eta^2-O_2N)(L3)]$ (blue) and $[Co(\eta^2-O_2NO)(L3)]$ (purple).

Figure S7. ¹H-NMR spectrum of **[Co(NO)(L3)]** in CDCl₃ at room temperature (* marks solvents and TMS peaks).

Figure S8. ¹H-NMR spectrum of $[Co(\eta^2-O_2N)(L3)]$ in CD₂Cl₂ at room temperature (* marks solvents and impurities peaks).

Figure S9. ¹H-NMR spectrum of $[Co(\eta^2-O_2NO)(L3)]$ in CD₂Cl₂ at room temperature (* marks solvents and impurities peaks).

Figure S10. IR spectral changes during the O₂ reaction of [Co(NO)(L3)] in solution: before O₂ addition (green) and after the reaction (blue).

Figure S11. UV-Vis spectral changes during the reaction of [Co(NO)(L3)] with O₂ in the solution state (spectra taken every 2 min): before O₂ addition (green) and after the reaction (blue). Inset: time dependent changes at 460 (blue) and 610 nm (red).

Figure S13. IR spectral changes during the O₂ reaction of **[Co(NO)(L3)]** in the solid state: before O₂ addition (green) and after the reaction (purple).

Figure S14. ¹H-NMR spectrum of the products of the O₂ reaction of **[Co(NO)(L3)]** in solution. Taken in CD₂Cl₂ at room temperature (* marks solvent, impurities, and TMS peaks).

Figure S15. ¹H-NMR spectrum of the products of the O₂ reaction of **[Co(NO)(L3)]** in the solid state. Taken in CD₂Cl₂ at room temperature (* marks solvent, impurities, and TMS peaks).

Table S2. Molecular Orbital (MO) decompositions for [Co(NO)(L0)] (S = 1/2), calculated with B3LYP/TZVP on the BP86/TZVP-optimized structure.

МО	%Co(d)	%NO	Character ^a
90	76	7	d _{xy}
91	75	1	d _{x2-y2}
92	57	11	$d_{yz}\pi^{*_h}$ (bonding)
93	21	6	$d_{xz}\pi^{*}v$ (bonding)
94	7	2	$Pyr(\pi) + d_{xz}$
95	8	1	$Pyr(\pi) + d_{z2}$
96	46	11	$d_{z2} + \pi *_h$
97	7	1	$Pyr(\pi) + d_{xy}$
98	20	2	Pyr(N)_d _{xy}
99	1	0	$Pyr(\pi)$
100 (HOMO)	28	3	$Pyr(N)_{d_{x^2-y^2}}$
101 (LUMO)	12	77	$\pi^*_{v_dxz}$ (antibonding)
102	14	77	$\pi^{*}_{h}d_{yz}$ (antibonding)
103	2	3	$Pyr(\pi^*)$
104	2	2	$Pyr(\pi^*)$
106	0	0	$Pyr(\pi^*)$

α-Spin Molecular Orbitals

β-Spin Molecular Orbitals

МО	%Co(d)	%NO	Character ^a
90	38	0	$d_{x_2-y_2}$ Pyr(N)
91	4	1	$d_{xy}Pyr(\pi)$
92	1	1	$Pyr(\pi)$
93	0	0	$Pyr(\pi)$
94	0	1	$Pyr(\pi)$
95	0	0	$Pyr(\pi)$
96	48	38	$\pi^{*}_{h}d_{yz}$ (bonding)
97	30	60	$\pi^*_{v_dxz}$ (bonding)
98	65	3	$d_{\sigma} + Pyr(N)$
99 (HOMO)	43	36	$d_{\sigma} + \pi^{*}_{h}$ (non-bonding)
100 (LUMO)	62	14	$d_{xy}/d_{xz} + \pi^*_v$ (non-bonding)
101	56	27	$d_{yz}\pi^{*_h}$ (antibonding)
102	55	21	$d_{xz}\pi^*v$ (antibonding)
103	5	1	$Pyr(\pi^*) + d_{x2-y2}$
104	27	0	$Pyr(\pi^*) + d_{xy}$
106	0	0	$Pyr(\pi^*)$

^a The nomenclature ' a_b ' indicates that orbital *a* interacts with *b* and that *a* has a larger contribution to the resulting MO.

	Table	S3.	Coordinated	l of the f	ully o	ptimized	structure c	of [Co	(NO)((L0)],	obtained with	n BP86/TZVP.
--	-------	-----	-------------	------------	--------	----------	-------------	--------	-------	--------	---------------	--------------

Со	-1.37068	-0.40828	0.36438
N	-0.56097	1.401	0.65239
N	0.76039	1.5598	0.3126
N	-0.56989	-0.44766	-1.47142
N	0.75117	-0.08906	-1.58762
N	0.26183	-1.29966	1.12994
N	1.48413	-0.82832	0.71557
С	-0.99587	2.57637	1.15134
С	0.06512	3.50368	1.13371
С	1.16437	2.83067	0.598
С	-1.00822	-0.78521	-2.70173
С	0.04986	-0.64283	-3.62168
С	1.15107	-0.20169	-2.88658
С	0.49018	-2.30706	2.0022
С	1.8791	-2.48331	2.14839
С	2.48106	-1.53174	1.32063
В	1.51438	0.34935	-0.30598
Н	2.65132	0.64599	-0.56904
Н	0.03701	4.53666	1.46862
Н	0.01879	-0.83769	-4.68989
Н	2.38885	-3.20979	2.77479
C	-2.40303	2.76319	1.62412
Н	-2.64814	2.06701	2.44081
Н	-2.54748	3.7879	1.99209
Н	-3.1257	2.5833	0.81406
C	2.55388	3.3282	0.35247
Н	2.62189	4.38563	0.64124
Н	3.30055	2.76885	0.93708
Н	2.83798	3.24626	-0.70777
C	3.93512	-1.26957	1.08529
H	4.21772	-0.24511	1.37179
H	4.53725	-1.96773	1.68183
H	4.20832	-1.4016	0.02729
C	-0.63889	-3.04364	2.64915
H	-0.58/22	-4.12208	2.43365
H	-0.61986	-2.92273	3./4358
H	-1.59973	-2.66072	2.2/635
	-2.4168	-1.22482	-2.94898
H	-3.132/4	-0.41091	-2./5/32
H II	-2.530/4	-1.5457	-3.99253
П	-2.094/3	-2.00500	-2.2951/ 2.251EE
с u	2.3373/ 2 20000	0.10002 _0 52505	-3.35155 _2 06751
n u	J.∠0000 J €001€	-0.033505	-2.00351 -1 12520
n u	2.0U010 2 01026	-U.US009 1 15170	-4.43538
п N	2.01920 _2 01016	1.131/9 _0 /7750	-3.14/40 0 /10/
И	-3.U1040 _/ 10020	-0.4//59	U.4194 0 25275
0	-4.10U3Z	-0.29490	0.454/5

|--|

Со	1.41956	-0.43693	-0.3433
N	0.50249	1.26491	-0.96797
N	-0.80545	1.44484	-0.63329
N	0.58314	-0.14541	1.51345
N	-0.73571	0.19864	1.54341
N	-0.23833	-1.50167	-0.88274
N	-1.45497	-0.98201	-0.55543
С	0.89289	2.35118	-1.64072
С	-0.1777	3.24236	-1.7425
С	-1.2391	2.63926	-1.09043
С	1.00103	-0.2205	2.77904
С	-0.06118	0.07642	3.63799
С	-1.14759	0.33635	2.82384
С	-0.45733	-2.66845	-1.49864
С	-1.83222	-2.90461	-1.56786
С	-2.43504	-1.81882	-0.95762
В	-1.51057	0.36096	0.21431
Н	-2.64145	0.66892	0.42607
Н	-0.18247	4.20407	-2.2284
Н	-0.0424	0.09828	4.7149
Н	-2.33055	-3.75442	-2.0039
C	2.28275	2.47888	-2.14283
Н	2.55674	1.6386	-2.78248
Н	2.4055	3.39365	-2.71886
Н	3.00191	2.49901	-1.3219
C	-2.62401	3.12113	-0.87613
Н	-2.75115	4.1077	-1.31628
Н	-3.36073	2.45435	-1.32751
Н	-2.86876	3.19153	0.18517
C	-3.8718	-1.53175	-0.73354
Н	-4.17916	-0.60144	-1.2141
Н	-4.48347	-2.33616	-1.13622
Н	-4.10363	-1.43106	0.32816
C	0.67544	-3.48662	-1.99136
Н	0.6263	-4.50816	-1.61323
Н	0.68487	-3.54724	-3.08084
Н	1.62259	-3.05058	-1.67113
C	2.40691	-0.56286	3.10388
Н	3.0874	0.25054	2.84464
Н	2.52113	-0.76495	4.16694
Н	2.73923	-1.44232	2.55141
C	-2.53866	0.70371	3.18036
Н	-3.25967	-0.03034	2.81622
Н	-2.64371	0.76917	4.26106
Н	-2.82572	1.66714	2.75522
Ν	3.08716	-0.52301	-0.23419
0	4.22965	-0.28904	-0.07763