Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information for

Isomeric Structure of Pentacoordinate Chiral Spirophosphoranes in Solution by combined use of NMR Experiments and GIAO DFT calculations of NMR parameters

Fedor M. Polyancev, Kirill E. Metlushka, Dilyara N. Sadkova, Zilya R. Khisametdinova, Olga N. Kataeva, Vladimir A. Alfonsov, Shamil K. Latypov^a, Oleg G. Sinyashin

^a A.E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan, 420088, Russian Federation.

E-mail: lsk@iopc.ru

Table of Contents

Experimental Section	5
Figure S1. ¹ H, ³¹ P{ ¹ H}, ³¹ P, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 4a in CDCl ₃ at $T = 303$ K.	6
Figure S2. ¹ H- ¹ H COSY spectra of 4a in CDCl ₃ at $T = 303$ K.	7
Figure S3. ¹ H- ¹³ C HSQC spectra of 4a in CDCl ₃ at $T = 303$ K.	8
Figure S4. ¹ H- ¹³ C HMBC spectra of 4a in CDCl ₃ at $T = 303$ K.	9
Figure S5. ¹ H- ³¹ P HMBC spectra of 4a in CDCl ₃ at $T = 303$ K.	10
Figure S6. ¹ H- ¹⁵ N HSQC spectra of 4a in CDCl ₃ at $T = 303$ K.	11
Figure S7. ¹ H- ¹⁵ N HMBC spectra of 4a in CDCl ₃ at $T = 303$ K.	12
Figure S8. ¹ H and 1D NOESY spectra of 4a in CDCl ₃ at $T = 303$ K.	13
Figure S9. ¹ H, ³¹ P{ ¹ H} spectra of 4a after 24h in CDCl ₃ at T = 303 K (4a 80 %, 4c 20 %).	14
Figure S10. ¹ H- ³¹ P HMBC spectra of 4a after 24h in CDCl ₃ at T = 303 K (4a 80 %, 4c 20 %).	15
Figure S11. ¹ H- ¹⁵ N HSQC spectra of 4a after 24h in CDCl ₃ at T = 303 K (4a 80 %, 4c 20 %).	16
Figure S12. ¹ H, ³¹ P{ ¹ H}, ³¹ P, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 4b in CDCl ₃ at $T = 303$ K.	17
Figure S13. ¹ H- ¹ H COSY spectra of 4b in CDCl ₃ at $T = 303$ K.	18
Figure S14. ¹ H- ¹³ C HSQC spectra of 4b in CDCl ₃ at $T = 303$ K.	19
Figure S15. ¹ H- ¹³ C HMBC spectra of 4b in CDCl ₃ at $T = 303$ K.	20
Figure S16. ¹ H- ³¹ P HMBC spectra of 4b in CDCl ₃ at $T = 303$ K.	21
Figure S17. ¹ H- ¹⁵ N HSQC spectra of 4b in CDCl ₃ at $T = 303$ K.	22
Figure S18. ¹ H and 1D NOESY spectra of 4b in CDCl ₃ at $T = 303$ K.	23
Figure S19. ¹ H, ³¹ P{ ¹ H}, ³¹ P, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 5a in CDCl ₃ at $T = 303$ K.	24
Figure S20. ¹ H- ¹ H COSY spectra of 5a in CDCl ₃ at $T = 303$ K.	25
Figure S21. ¹ H- ¹³ C HSQC spectra of 5a in CDCl ₃ at $T = 303$ K.	26

Figure S22. ¹ H- ¹³ C HMBC spectra of 5a in CDCl ₃ at $T = 303$ K.	27
Figure S23. ¹ H- ³¹ P HMBC spectra of 5a in CDCl ₃ at $T = 303$ K.	28
Figure S24. ¹ H- ¹⁵ N HSQC spectra of 5a in CDCl ₃ at $T = 303$ K.	29
Figure S25. ¹ H- ¹⁵ N HMBC spectra of 5a in CDCl ₃ at $T = 303$ K.	30
Figure S26. ¹ H and 1D NOESY spectra of 5a in CDCl ₃ at $T = 303$ K.	31
Figure S27. ¹ H, ¹ H{ ¹⁹ F} and ¹⁹ F{ ¹ H} spectra of 5a in CDCl ₃ at $T = 303$ K.	32
Figure S28. ¹⁹ F- ¹ H HETCOR spectra of 5a in CDCl ₃ at $T = 303$ K.	33
Figure S29. ¹ H, ³¹ P{ ¹ H}, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 5a after 5 days in CDCl ₃ at $T = 303$ K (the minor component corresponds to 5c).	34
Figure S30. ¹ H- ¹ H COSY spectra of 5a after 5 days in CDCl ₃ at T = 303 K (5a 87 %, 5c 13 %).	35
Figure S31. ¹ H- ¹³ C HSQC spectra of 5a after 5 days in CDCl ₃ at T = 303 K (5a 87 %, 5c 13 %).	36
Figure S32. ¹ H- ¹³ C HMBC spectra of 5a after 5 days in CDCl ₃ at $T = 303$ K (5a 87 %, 5c 13 %).	37
Figure S33. ¹ H- ³¹ P HMBC spectra of 5a after 5 days in CDCl ₃ at $T = 303$ K (5a 87 %, 5c 13 %).	38
Figure S34. ¹ H- ¹⁵ N HSQC spectra of 5a after 5 days in CDCl ₃ at $T = 303$ K (5a 87 %, 5c 13 %).	39
Figure S35. 2D DOSY spectra of 5a after 5 days in CDCl ₃ at T = 303 K (5a 87 %, 5c 13 %).	40
Figure S36. ¹ H, ³¹ P{ ¹ H}, ³¹ P, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 5b in CDCl ₃ at $T = 303$ K.	41
Figure S37. ¹ H- ¹ H COSY spectra of 5b in CDCl ₃ at $T = 303$ K.	42
Figure S38. ¹ H- ¹³ C HSQC spectra of 5b in CDCl ₃ at $T = 303$ K.	43
Figure S39. ¹ H- ¹³ C HMBC spectra of 5b in CDCl ₃ at $T = 303$ K.	44
Figure S40. ¹ H- ³¹ P HMBC spectra of 5b in CDCl ₃ at $T = 303$ K.	45
Figure S41. ¹ H- ¹⁵ N HSQC spectra of 5b in CDCl ₃ at $T = 303$ K.	46
Figure S42. ¹ H and 1D NOESY spectra of 5b in CDCl ₃ at $T = 303$ K.	47
Figure S43. ¹ H, ¹ H{ ¹⁹ F} and ¹⁹ F{ ¹ H} spectra of 5b in CDCl ₃ at $T = 303$ K.	48
Figure S44. ¹⁹ F- ¹ H HETCOR spectra of 5b in CDCl ₃ at $T = 303$ K.	49
Figure S45. ¹ H, ³¹ P{ ¹ H}, ³¹ P, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 6a in CDCl ₃ at $T = 303$ K.	50

Figure S46. ¹ H- ¹ H COSY spectra of 6a in CDCl ₃ at $T = 303$ K.	51
Figure S47. ¹ H- ¹³ C HSQC spectra of $6a$ in CDCl ₃ at T = 303 K.	52
Figure S48. ¹ H- ¹³ C HMBC spectra of 6a in CDCl ₃ at $T = 303$ K.	53
Figure S49. ¹ H- ³¹ P HMBC spectra of $6a$ in CDCl ₃ at T = 303 K.	54
Figure S50. ¹ H- ¹⁵ N HSQC spectra of 6a in CDCl ₃ at $T = 303$ K.	55
Figure S51. ¹ H- ¹⁵ N HMBC spectra of $6a$ in CDCl ₃ at T = 303 K.	56
Figure S52. ¹ H, ³¹ P{ ¹ H} spectra of 6a after 24h in CDCl ₃ at T = 303 K (6a 86 %, 6c 14 %).	57
Figure S53. ¹ H- ³¹ P HMBC spectra of 6a in CDCl ₃ at $T = 303$ K after 24h in CDCl ₃ at $T = 303$ K (6a 86 %, 6c 14 %).	58
Figure S54. ¹ H, ³¹ P{ ¹ H}, ¹³ C{ ¹ H} and ¹³ C DEPT spectra of 6b in CDCl ₃ at $T = 303$ K.	59
Figure S55. ¹ H- ¹ H COSY spectra of 6b in CDCl ₃ at $T = 303$ K.	60
Figure S56. ¹ H- ¹³ C HSQC spectra of 6b in CDCl ₃ at $T = 303$ K.	61
Figure S57. ¹ H- ¹³ C HMBC spectra of 6b in CDCl ₃ at $T = 303$ K.	62
Figure S58. ¹ H- ³¹ P HMBC spectra of 6b in CDCl ₃ at $T = 303$ K.	63
Figure S59. ¹ H- ¹⁵ N HSQC spectra of 6b in CDCl ₃ at $T = 303$ K.	64
Figure S60. ¹ H and 1D NOESY spectra of 6b in CDCl ₃ at $T = 303$ K.	65
Calculations	66
Table S1. Calculated NMR parameters for compound 4 with inclusion of solvent effects in frame of PCM.	67

Experimental Section

NMR Spectroscopy. All NMR experiments were performed with a 600, 500 and 400 MHz (600.1, 500.1 and 400.1 MHz for ¹H NMR; 150.9, 125.8 and 100.6 MHz for ¹³C NMR; 242.9, 202.5 and 162.0 MHz for ³¹P NMR, 60.81 MHz for ¹⁵N NMR, 376.5 for ¹⁹F respectively) spectrometers equipped with a 5 mm diameter probehead and a pulsed gradient unit capable of producing magnetic field pulse gradients in the z-direction of 53.5 G·cm⁻¹. For ¹H-¹³C correlations HSQC experiment optimized for J = 145 Hz. For ¹H-¹³C long range correlations HMBC experiment optimized for J = 8 Hz. For ¹H-¹³C long range correlations HSQC experiment optimized for J = 8 Hz. For ¹H-¹⁵N correlations HMBC experiment optimized for J = 6 Hz. For ¹H-¹⁵N correlations HSQC experiment optimized for J = 6 Hz. For ¹H-¹⁵N correlations HETCOR experiment optimized for J = 3 Hz. DOSY experiments were performed with ledbpgp2s,¹ using a stimulated echo sequence and two spoil gradients. NOE experiments were performed with 1D DPFGNOE techniques.² CS's (δ in ppm) were referenced to the solvent CDCl₃ ($\delta = 7.27$ ppm for ¹H and 77.0 ppm for ¹³C NMR) and to external H₃PO₄ (0.0 ppm) for ³¹P NMR spectra, to external C₆F₆ (-164.9 ppm) for ¹⁹F NMR spectra.

¹W. S. Price, Concepts Magn. Reson., 1997, 9, 299; W. S. Price, Concepts Magn. Reson., 1998, 10, 197; C. S. Johnson, Prog. Nucl. Magn. Reson. Spectrosc., 1999, 34, 203.

² J. Stonehouse, P. Adell, J. Keeler and A.J. Shaka, J. Am. Chem. Soc., 1994, 116, 6037.

Figure S1. ¹H (a), ³¹P{¹H} (b), ³¹P (c), ¹³C{¹H} (d) and ¹³C DEPT (e) spectra of **4a** in CDCl₃ at T = 303 K.

Figure S2. ¹H-¹H COSY spectra of **4a** in CDCl₃ at T = 303 K.

Figure S3. ^{1}H - ^{13}C HSQC spectra of **4a** in CDCl₃ at T = 303 K.

Figure S4. ¹H-¹³C HMBC spectra of 4a in CDCl₃ at T = 303 K.

Figure S5. ¹H-³¹P HMBC spectra of **4a** in CDCl₃ at T = 303 K.

Figure S6. ^{1}H - ^{15}N HSQC spectra of **4a** in CDCl₃ at T = 303 K.

Figure S7. ¹H-¹⁵N HMBC spectra of **4a** in CDCl₃ at T = 303 K.

Figure S8. ¹H (a) and 1D NOESY (b-h) spectra of 4a in CDCl₃ at T = 303 K.

Figure S9. ¹H (a), ³¹P{¹H} (b) spectra of **4a** after 24h in CDCl₃ at T = 303 K (**4a** 80 %, **4c** 20 %).

Figure S10. ¹H-³¹P HMBC spectra of 4a after 24h in CDCl₃ at T = 303 K (4a 80 %, 4c 20 %).

Figure S11. ¹H-¹⁵N HSQC spectra of **4a** after 24h in CDCl₃ at T = 303 K (**4a** 80 %, **4c** 20 %).

Figure S12. ¹H (a), ³¹P{¹H} (b), ³¹P (c), ¹³C{¹H} (d) and ¹³C DEPT (e) spectra of **4b** in CDCl₃ at T = 303 K.

Figure S13. ¹H-¹H COSY spectra of **4b** in CDCl₃ at T = 303 K.

Figure S14. ¹H-¹³C HSQC spectra of **4b** in CDCl₃ at T = 303 K.

Figure S15. ¹H-¹³C HMBC spectra of **4b** in CDCl₃ at T = 303 K.

Figure S16. ¹H-³¹P HMBC spectra of **4b** in CDCl₃ at T = 303 K.

Figure S17. ¹H-¹⁵N HSQC spectra of **4b** in CDCl₃ at T = 303 K.

Figure S18. ¹H (a) and 1D NOESY (b-d) spectra of **4b** in CDCl₃ at T = 303 K.

Figure S19. ¹H (a), ³¹P{¹H} (b), ³¹P (c), ¹³C{¹H} (d) and ¹³C DEPT (e) spectra of **5a** in CDCl₃ at T = 303 K.

Figure S20. ¹H-¹H COSY spectra of **5a** in CDCl₃ at T = 303 K.

Figure S21. ¹H-¹³C HSQC spectra of 5a in CDCl₃ at T = 303 K.

Figure S22. ¹H-¹³C HMBC spectra of 5a in CDCl₃ at T = 303 K.

Figure S23. ¹H-³¹P HMBC spectra of **5a** in CDCl₃ at T = 303 K.

Figure S24. ¹H-¹⁵N HSQC spectra of **5a** in CDCl₃ at T = 303 K.

Figure S25. ¹H-¹⁵N HMBC spectra of **5a** in CDCl₃ at T = 303 K.

Figure S26. ¹H (a) and 1D NOESY (b-f) spectra of 5a in CDCl₃ at T = 303 K.

Figure S27. ¹H (a), ¹H{¹⁹F} (b) and ¹⁹F{¹H} (c) spectra of 5a in CDCl₃ at T = 303 K.

Figure S28. ¹⁹F-¹H HETCOR spectra of **5a** in CDCl₃ at T = 303 K.

Figure S29. ${}^{1}H$ (a), ${}^{31}P{}^{1}H$ (b), ${}^{13}C{}^{1}H$ (c) and ${}^{13}C$ DEPT (d) spectra of 5a after 5 days in CDCl₃ at T = 303 K (5a 87 %, 5c 13 %).

Figure S30. ¹H-¹H COSY spectra of **5a** after 5 days in CDCl₃ at T = 303 K (**5a** 87 %, **5c** 13 %).

Figure S31. ¹H-¹³C HSQC spectra of 5a after 5 days in CDCl₃ at T = 303 K (5a 87 %, 5c 13 %).

Figure S32. ¹H-¹³C HMBC spectra of **5a** after 5 days in CDCl₃ at T = 303 K (**5a** 87 %, **5c** 13 %).

Figure S33. ¹H-³¹P HMBC spectra of **5a** after 5 days in CDCl₃ at T = 303 K (**5a** 87 %, **5c** 13 %).

Figure S34. ¹H-¹⁵N HSQC spectra of 5a after 5 days in CDCl₃ at T = 303 K (5a 87 %, 5c 13 %).

Figure S35. 2D DOSY spectra of 5a after 5 days in CDCl₃ at T = 303 K (5a 87 %, 5c 13 %).

Figure S36. ¹H (a), ³¹P{¹H} (b), ³¹P (c), ¹³C{¹H} (d) and ¹³C DEPT (e) spectra of **5b** in CDCl₃ at T = 303 K.

Figure S37. ¹H-¹H COSY spectra of **5b** in CDCl₃ at T = 303 K.

Figure S38. ¹H-¹³C HSQC spectra of **5b** in CDCl₃ at T = 303 K.

Figure S39. ¹H-¹³C HMBC spectra of **5b** in CDCl₃ at T = 303 K.

Figure S40. ¹H-³¹P HMBC spectra of **5b** in CDCl₃ at T = 303 K.

Figure S41. ¹H-¹⁵N HSQC spectra of **5b** in CDCl₃ at T = 303 K.

Figure S42. ¹H (a) and 1D NOESY (b-h) spectra of **5b** in CDCl₃ at T = 303 K.

Figure S43. ¹H (a), ¹H $\{^{19}F\}$ (b) and ¹⁹F $\{^{1}H\}$ (c) spectra of **5b** in CDCl₃ at T = 303 K.

Figure S44. ¹⁹F-¹H HETCOR spectra of **5b** in CDCl₃ at T = 303 K.

Figure S45. ¹H (a), ³¹P{¹H} (b), ³¹P (c), ¹³C{¹H} (d) and ¹³C DEPT (e) spectra of **6a** in CDCl₃ at T = 303 K.

Figure S46. ¹H-¹H COSY spectra of **6a** in CDCl₃ at T = 303 K.

Figure S47. ¹H-¹³C HSQC spectra of **6a** in CDCl₃ at T = 303 K.

Figure S48. ¹H-¹³C HMBC spectra of **6a** in CDCl₃ at T = 303 K.

Figure S49. ¹H-³¹P HMBC spectra of **6a** in CDCl₃ at T = 303 K.

Figure S50. ¹H-¹⁵N HSQC spectra of **6a** in CDCl₃ at T = 303 K.

Figure S51. ¹H-¹⁵N HMBC spectra of **6a** in CDCl₃ at T = 303 K.

Figure S52. ¹H (a), ³¹P{¹H} (b) spectra of **6a** after 24h in CDCl₃ at T = 303 K (**6a** 86 %, **6c** 14 %).

Figure S53. ^{1}H - ^{31}P HMBC spectra of 6a in CDCl₃ at T = 303 K after 24h in CDCl₃ at T = 303 K (6a 86 %, 6c 14 %).

Figure S54. ¹H (a), ³¹P{¹H} (b), ¹³C{¹H} (c) and ¹³C DEPT (d) spectra of **6b** in CDCl₃ at T = 303 K.

Figure S55. ¹H-¹H COSY spectra of **6b** in CDCl₃ at T = 303 K.

Figure S56. ¹H-¹³C HSQC spectra of **6b** in CDCl₃ at T = 303 K.

Figure S57. ¹H-¹³C HMBC spectra of **6b** in CDCl₃ at T = 303 K.

Figure S58. ¹H-³¹P HMBC spectra of **6b** in CDCl₃ at T = 303 K.

Figure S59. ¹H-¹⁵N HSQC spectra of **6b** in CDCl₃ at T = 303 K.

Figure S60. ¹H (a) and 1D NOESY (b-g) spectra of **6b** in CDCl₃ at T = 303 K.

Calculations

The quantum chemical calculations were performed using Gaussian 03. Full geometry optimizations have been carried out within the framework of DFT (PBE1PBE) method using 6-31+G(d) basis sets. Chemical shifts (CSs) and SSC were calculated by the GIAO method at the PBE1PBE/6-311G(2d,2p) level of theory. ³¹P CSs were referred to H₃PO₄ and linear scaling procedure was applied ($\delta_{scaled} = (\delta_{unscaled} - intercept)/slope$, where intepcept = -14.4 ppm, slope = 1.073).³ ¹H CSs were referred to TMS.

³ Sh. K. Latypov, F. M. Polyancev, D. G. Yakhvarov and O. G. Sinyashin, Phys. Chem. Chem. Phys., 2015, 17, 6976.

 $^{3}J_{\mathrm{PH4}}$ $\delta H_{17,19}$ Isomer ΔΕ $\delta^{31}P$ δH_6 $\delta H_{16,20}$ δH_4 δH_5 $^{1}J_{\mathrm{PH}}$ -76.0 7.64 7.59 7.42 5.95 3.78 716.4 36.2 0 Ι 7.43, 7.87 7.23, 7.59 Π 0.4 -77.4 7.76 5.80, 5.84 3.49, 3.84 739.2 27.8, 34.9 2.4 -77.5 7.91 7.71 7.53 5.78 3.57 759.3 25.5 III

Table S1. Calculated NMR parameters for compound 4 with inclusion of solvent effects in frame of PCM^a.

^a CS's calculated in frame of PCM (chloroform), chemical shifts in ppm, spin-spin couplings in Hz, relative energy, in kcal/mol.