Supporting Information

Temperature dependent NIR emitting lanthanide-PMO/silica hybrid materials

Anna M. Kaczmarek,^{‡*,a} Dolores Esquivel,^{‡b} Judith Ouwehand,^c Pascal Van Der Voort,^c Francisco J. Romero-Salguero,^b Rik Van Deun^{*,a}

Fig. S1 N_2 adsorption-desorption isotherms of the parent materials (left) and dipyridyl-pyridazine functionalized materials (right).

Fig. S2 Combined excitation-emission spectra of $Nd^{3+}\beta$ -diketonate complexes (the spectra were recorded by exciting into the maximum of the broad excitation band and observing at the maximum of the strongest emission peak).

Fig. S3 Combined excitation-emission spectra of Yb³⁺ β -diketonate complexes (the spectra were recorded by exciting into the maximum of the broad excitation band and observing at the maximum of the strongest emission peak).

Fig. S4 Combined excitation-emission spectra of $Er^{3+}\beta$ -diketonate complexes (the spectra were recorded by exciting into the maximum of the broad excitation band and observing at the maximum of the strongest emission peak).

Fig. S5 Combined excitation-emission spectra of dppz-ePMO@NdCl₃ material (the spectra were recorded by exciting into the maximum of the broad excitation band and observing at the maximum of the strongest emission peak).

Fig. S6 Combined excitation-emission spectra of dppz-vSilica@NdCl $_3$ material (the spectra were recorded by exciting into the maximum of the

broad excitation band and observing at the maximum of the strongest emission peak).

Fig. S7 Combined excitation-emission spectra of dppz-vSilica@YbCl₃ material (the spectra were recorded by exciting into the maximum of the broad excitation band and observing at the maximum of the strongest emission peak).*

*The signal of the $ePMO@YbCl_3$ material was too weak to record a sufficient excitation and emission spectrum. Also almost no signal was detected for the dppz-vSilica@ErCl_3 and dppz-ePMO@ErCl_3 materials, therefore they are not presented in the SI.

Table S1. Assignment of peaks observed in the excitation and emission spectra of dppz-ePMO@LnL₃ and dppz-vSilica@LnL₃ samples.

dppz-ePMO@Nd(tta) ₃			
excitation		emission	
wavelength [nm]	transition	wavelength [nm]	transition
352.0	$\pi \rightarrow \pi^*$	898.0	${}^{4}\mathrm{F}_{3/2} \rightarrow {}^{4}\mathrm{I}_{9/2}$
465.0	${}^{4}G_{11/2}, {}^{2}D_{3/2}, {}^{2}P_{3/2},$	1064.0	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$
	$^{2}\text{G}_{9/2}, ^{2}\text{K}_{15/2} \leftarrow$		
	⁴ I _{9/2}		
517.0	${}^{4}G_{9/2}, {}^{4}G_{7/2}, {}^{5}K_{13/2}$	1335.0	${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$
	$\leftarrow {}^{4}I_{9/2}$		
578.0	${}^{2}G_{7/2}, {}^{2}G_{5/2} \leftarrow {}^{3}I_{9/2}$		
685.0	$F_{9/2} \leftarrow F_{9/2}$		
740.0	$S_{3/2}, F_{7/2} \leftarrow T_{9/2}$		
dppz-ePMO(<i>a</i> /Nd(bta) ₃			
excitation		emission wavelength [nm] transition	
wavelength [hm]	transition	wavelength [hm]	$\frac{4}{4}$
327.0	$\pi \rightarrow \pi^{*}$	895.0	$F_{3/2} \rightarrow I_{9/2}$
461.0	$G_{11/2}, -D_{3/2}, -P_{3/2},$	1064.0	$F_{3/2} \rightarrow T_{11/2}$
	$G_{9/2}, K_{15/2} \leftarrow 4_{I}$		
517.0	4C $4C$ $3V$	1226.0	4_{Γ} , 4_{I}
517.0	$U_{9/2}, U_{7/2}, K_{13/2}$	1550.0	$\Gamma_{3/2} \rightarrow \Gamma_{13/2}$
576.0	2C $4C$ $4I$		
576.0	$\mathbf{G}_{7/2}, \mathbf{G}_{5/2} \leftarrow \mathbf{I}_{9/2}$		
089.0	$\Gamma_{9/2} \leftarrow \Gamma_{9/2}$ $4_{\mathbf{C}} \qquad 4_{\mathbf{E}} \qquad 4_{\mathbf{I}}$		
738.0	$3_{3/2}$, $1_{7/2} \leftarrow 1_{9/2}$	a@Nd(tta).	
excitation emission			
wavelength [nm]	transition	wavelength [nm]	transition
350.0	$\pi \rightarrow \pi^*$	899.0	${}^{4}F_{2/2} \rightarrow {}^{4}I_{0/2}$
462.0	${}^{4}\text{G}_{11/2} {}^{2}\text{D}_{2/2} {}^{2}\text{P}_{2/2}$	1065.0	${}^{4}F_{2/2} \rightarrow {}^{4}I_{11/2}$
	${}^{2}G_{0/2} {}^{2}K_{15/2} \leftarrow$	1000.0	- 5/2 -11/2
	⁴ Io/2		
521.0	${}^{4}G_{0/2}$ ${}^{4}G_{7/2}$ ${}^{3}K_{12/2}$	1335.0	${}^{4}F_{2/2} \rightarrow {}^{4}I_{12/2}$
021.0	$\leftarrow {}^{4}I_{0/2}$	1000.0	- 5/2 - 15/2
579.0	${}^{2}\text{G}_{7/2}, {}^{4}\text{G}_{5/2} \leftarrow {}^{4}\text{I}_{9/2}$		
680.0	${}^{4}F_{0/2} \leftarrow {}^{4}I_{0/2}$		
739.0	${}^{4}S_{3/2}, {}^{4}F_{7/2} \leftarrow {}^{4}I_{9/2}$		
dppz-vSilica@Nd(bta) ₃			
excitation emission			
wavelength [nm]	transition	wavelength [nm]	transition
336.0	$\pi \rightarrow \pi^*$	898.0	${}^{4}F_{3/2} \rightarrow {}^{4}I_{9/2}$
461.0	${}^{4}G_{11/2}$, ${}^{2}D_{3/2}$, ${}^{2}P_{3/2}$,	1069.0	${}^{4}F_{3/2} \rightarrow {}^{4}I_{11/2}$
	${}^{2}G_{9/2}, {}^{2}K_{15/2} \leftarrow$		5,2 11,2
	⁴ I _{9/2}		
515.0	${}^{4}G_{9/2}, {}^{4}G_{7/2}, {}^{3}K_{13/2}$	1335.0	${}^{4}F_{3/2} \rightarrow {}^{4}I_{13/2}$
	$\leftarrow {}^{4}I_{9/2}$		
576.0	${}^{2}\text{G}_{7/2}, {}^{4}\text{G}_{5/2} \leftarrow {}^{4}\text{I}_{9/2}$		
740.0	${}^{4}S_{3/2}, {}^{4}F_{7/2} \leftarrow {}^{4}I_{9/2}$		

S8

Fig. S8 Decay profile of dppz-ePMO@Nd(tta)₃.

Fig. S9 Decay profile of dppz-ePMO@Nd(bta)₃.

Fig. S10 Decay profile of dppz-vSilica@Nd(tta)₃.

Fig. S11 Decay profile of dppz-vSilica@Nd(bta)₃.

Fig. S12 Decay profile of dppz-ePMO@Yb(tta)₃.

Fig. S13 Decay profile of dppz-ePMO@Yb(bta)₃.

Fig. S14 Decay profile of dppz-vSilica@Yb(tta)₃.

Fig. S15 Decay profile of dppz-vSilica@Yb(bta)₃.

$$\tau_{av} = \frac{A_1 \tau_f^2 + A_2 \tau_s^2}{A_1 \tau_f + A_2 \tau_s}$$
(S1)

where τ_f is the fast decay time and τ_s is the slow decay time.

Fig. S16 Temperature dependent luminescence of Nd(tta)_3 $\cdot 2H_2O$ recorded in the 10 – 360 K temperature range.