Electronic Supplementary Information

The first Re^I organometallic complex with an organoimido-

polyoxometalate ligand.

Patricio Hermosilla-Ibáñez,^{a,b} Kerry Wrighton-Araneda,^{a,b} Gaspar Prado,^c Verónica Paredes-García,^{b,c} Nancy Pizarro,^c Andrés Vega*^{b,c} and Diego Venegas-Yazigi*^{a,b}.

^{a)} Universidad de Santiago de Chile, Facultad de Química y Biología, Departamento de Química de los Materiales, (IPMag), Chile.

^{b)} Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile..

^{c)} Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas, (IPMag), Chile.

E-mail: diego.venegas@usach.cl; Tel:(+)56-2-27181079

Empirical Formula	$C_{41}H_{80}Mo_6N_6O_{18}$
Formula weight	1520.75
Temperature/K	296(2)
Crystal system	Triclinic
Space group	P1
a/Å	11.835(3)
b/Å	14.997(4)
c/Å	16.445(4)
α/°	85.180(3)
β/°	84.602(3)
$\gamma/^{\circ}$	82.019(3)
Volume/Å ³	2870.4(12)
Z	2
$\rho_{calc} g/cm^3$	1.760
μ/mm^{-1}	1.340
F(000)	1528.0
Crystal size/mm ³	0.10 imes 0.05 imes 0.05
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	4.454 to 54
Index ranges	-15 \leq h \leq 15, -19 \leq k \leq 19, -20 \leq l \leq 20
Reflections collected	92492
Independent reflections	24951 [$R_{int} = 0.1095$, $R_{sigma} = 0.1181$]
Data/restraints/parameters	24951/263/1367
Goodness-of-fit on F^2	1.004
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0604, wR_2 = 0.1093$
Final R indexes [all data]	$R_1 = 0.1506, wR_2 = 0.1445$
Largest diff. peak/hole / e Å-3	0.57/-0.56

Table S1. Crystal parameters and refinement details for 1

Table S2. Shape calculation of the continuous shape measurements of all molybdenumatoms of the two POMs. HP-6 (Hexagon); PPY-6 (Pentagonal pyramid);OC-6 (Octahedron); TPR-6 (Trigonal prism); JPPY-6 (Johnson pentagonal pyramid J2).

ML ₆ -unit I	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
Mo1	33.822	29.71	0.939	17.016	33.205
Mo2	33.614	29.465	0.888	16.599	32.984
Mo3	33.703	29.71	0.893	16.823	33.133
Mo4N	33.134	29.447	0.649	16.741	33.008
Mo5	33.287	29.6	0.898	16.875	32.982
Моб	33.669	29.548	0.867	17.059	33.035
ML ₆ -unit II	HP-6	PPY-6	OC-6	TPR-6	JPPY-6
ML ₆ -unit II Mo7	HP-6 33.227	PPY-6 29.666	OC-6	TPR-6 16.842	JPPY-6 33.132
ML ₆ -unit II Mo7 Mo8	HP-6 33.227 33.456	PPY-6 29.666 29.608	OC-6 0.833 0.874	TPR-6 16.842 17.025	JPPY-6 33.132 32.914
ML ₆ -unit II Mo7 Mo8 Mo9	HP-6 33.227 33.456 33.617	PPY-6 29.666 29.608 29.529	OC-6 0.833 0.874 0.912	TPR-6 16.842 17.025 16.786	JPPY-6 33.132 32.914 33.044
ML ₆ -unit II Mo7 Mo8 Mo9 Mo10	HP-6 33.227 33.456 33.617 33.198	PPY-6 29.666 29.608 29.529 29.013	OC-6 0.833 0.874 0.912 0.886	TPR-6 16.842 17.025 16.786 16.672	JPPY-6 33.132 32.914 33.044 32.425
ML ₆ -unit II Mo7 Mo8 Mo9 Mo10 Mo11N	HP-6 33.227 33.456 33.617 33.198 32.648	PPY-6 29.666 29.608 29.529 29.013 29.75	OC-6 0.833 0.874 0.912 0.886 0.672	TPR-6 16.842 17.025 16.786 16.672 16.902	JPPY-6 33.132 32.914 33.044 32.425 33.046

Signals	1	2	
	δ/ppm	δ/ppm	
а	0.91	0.90	t, -CH ₃ , $[n-Bu_4N]^+$
b	1.28	1.25	m, -CH ₂ -, $[n-Bu_4N]^+$
c	1.52	1.51	m, -CH ₂ -, $[n-Bu_4N]^+$
d	3.14	3.13	t, N-CH ₂ -, $[n-Bu_4N]^+$
e	5.16	4.88, 5.74	s, N-CH ₂ -C
f	6.51	6.33	d, aromatic
g	6.98	6.57	d, aromatic
h	7.92	8.02	s, N-CH-N
i	8.53	8.80	s, N-CH-N
j	-	8.17	dd, phen
k	-	8.31	s, phen
1	-	9.01	dd, phen
m	-	9.61	dd, phen

Table S3. ¹H-NMR signals of compounds **1** and **2**. The letters indicates to what protons are related the signals.

Table S4. Summary of cathodic shifts ($\Delta E_{1/2}$) for the first reduction potential of hexamolybdates functionalized with different organoimido groups. All values were compared with the reduction potential of hexamolybdate [Mo₆O₁₉]²⁻.

$\Delta E_{1/2}$ / mV	Mo ₆ O ₁₈ N-R	References
271 307 270	$R = -CH_3$ $R = -C(CH_3)_3$ $R = -CH_2-(CH_2)_4-CH_3$	1
189	R = -Br	2
212	$H_{3}C$ $-Br$ $R = H_{3}C$	2
191		
197		3
258	R =	4
185		5
452	R =	6
174	$R = - s^{CH_3}$	7

References

- 1 Q. Li, L. Wang, P. Yin, Y. Wei, J. Hao, Y. Zhu, L. Zhu and G. Yuan, *Dalton Trans.*, 2009, **18**, 1172–1179.
- 2 Q. Li, L. Zhu, X. Meng, Y. Zhu, J. Hao and Y. Wei, *Inorg. Chim. Acta*, 2007, **360**, 2558–2564.
- 3 Q. Li, Y. Wei, H. Guo and C.-G. Zhan, *Inorg. Chim. Acta*, 2008, **361**, 2305–2313.
- 4 L. Wang, L. Zhu, P. Yin, W. Fu, J. Chen, J. Hao, F. Xiao, C. Lv, J. Zhang, L. Shi, Q. Li and Y. Wei, Inorg. Chem., 2009, **48**, 9222–9235.

- 5 A. Al-Yasari, N. Van Steerteghem, H. El Moll, K. Clays and J. Fielden, *Dalton Trans.*, 2016, **45**, 2818–2822.
- 6 J. Gao, X. Liu, Y. Liu, L. Yu, Y. Feng, H. Chen, Y. Li, G. Rakesh, C. H. A. Huan, T. C. Sum, Y. Zhao and Q. Zhang, *Dalton Trans.*, 2012, **41**, 12185-12191.
- H. Guo, S.-Z. Li, X.-X. Xiong, D. Li, Z.-Y. Liu, L.-S. Wang and P.-F. Wu, *Polyhedron*, 2015, **92**, 1–6.

Table S5. Summary of calculated and experimental redox potentials for the first reduction process.

Reaction	E _{redox} / V	Shift E _{redox} /mV	E _{1/2} / V Exp.	Shift E _{1/2} /mV
$[Mo_5^{VI}O_{19}]^{2-} + e \rightarrow [Mo_5^{VI}Mo_1^VO_{19}]^{3-}$	-0.6867	-	-0.801	-
$[Mo_{6}^{VI}O_{18}-NC_{6}H_{4}-CH_{2}-N_{3}C_{2}H_{2}]^{2}+e \rightarrow [Mo_{5}^{VI}Mo_{1}^{V}O_{18}-NC_{6}H_{4}-CH_{2}-N_{3}C_{2}H_{2}]^{3}$	-0.9389	252	-1.011	175
$[Mo_{6}^{VI}O_{18}NC_{6}H_{4}-CH_{2}-N_{3}C_{2}H_{2}-RePhen(CO)_{3}]^{T}+e \rightarrow [Mo_{5}^{VI}Mo_{1}^{V}O_{18}NC_{6}H_{4}-CH_{2}-N_{3}C_{2}H_{2}-RePhen(CO)_{3}]^{2}$	-0.9108	224	-0.911	130
·				

Table S6. Summary of charges condensed to atoms employing MPA, NPA, APTPA and HPA for the constituent fragment of Mo_6 , 1 and 2.

Compound	Fragment	MPA	NPA	APTPA	HPA
Mo ₆	Mo_6O_{18}	-1.490	-1.589	-0.729	-1.753
	0	-0.510	-0.411	-1.271	-0.247
1	Mo_6O_{18}	-1.648	-1.982	-1.325	-2.056
	$NC_6H_4\text{-}CH_2\text{-}N_3C_2H_2$	-0.352	-0.018	-0.675	+0.056
2	Ma O	1 638	1 073	1 280	2.047
2	NO_6O_{18}	-1.038	-1.973	-1.209	-2.047
	$NC_6H_4-CH_2-N_3C_2H_2$	-0.008	+0.310	-0.451	+0.441
	Rephen(CO) ₃	+0.647	+0.663	+0.740	+0.606
1-Mo/	$M_{\Omega_{\epsilon}}\Omega_{10}$	-0 158	-0 393	-0 596	-0 303
2-Mo.		-0.148	-0.384	-0.560	-0.294
$2 - 1010_6$		-0.140	-0.304	-0.500	-0.274
Z-1	MO_6O_{18}	+0.010	+0.009	+0.036	+0.009
2-1	NC_6H_4 - CH_2 - $N_3C_2H_2$	+0.344	+0.328	+0.224	+0.385

MPA: Mulliken Population AnalysisNPA: Natural Population AnalysisAPTPA: Atomic Polar Tensor Population AnalysisHPA: Hirshfeld Population Analysis

Compound	Wavelength	Oscillator	Assignment	%
	nm	Strength		Contribution
Mo ₆	313.3	0.050	HOMO - 1 \rightarrow LUMO	44
			HOMO \rightarrow LUMO + 1	42
			HOMO - 4 \rightarrow LUMO + 2	8
1	346.5	0.377	HOMO \rightarrow LUMO + 6	84
2	345.4	0.398	HOMO \rightarrow LUMO + 7	76
			HOMO - 1 \rightarrow LUMO + 7	8

Table S7. Electronic parameters of the most intensive excitation corresponding to Mo_6 , 1 and 2.

Scheme S1. Nitrogen location possibilities for the 1,2,4-triazole ring in **1**.

Scheme S2. A'(1), A'(2), and A" normal modes in C_s symmetry.

Figure S1. Crystal packing of compound **1**, showing the spatial disposition of the two different organoimido polyoxomolybdates units. $[n-Bu_4N]^+$ were omitted for clarity.

Figure S2. FTIR-ATR spectrum in the 400 to 4000 cm⁻¹ region of compound 1 (blue).

Figure S3. FTIR-ATR spectra of **2** (red) and organometallic precursor *fac*- $[(phen)(H_2O)Re(CO)_3]^+(CF_3SO_3)^-$ (black), in the 400 to 4000 cm⁻¹ region.

Figure S4. EDX spectrum of [*n*-Bu₄N][Mo₆O₁₈NC₆H₄-CH₂-N₃C₂H₂-Re(phen)(CO)₃] (2).

Figure S5. The ¹H-NMR spectrum of hydrochloride salt of 4-(1,2,4-triazolylmethyl)phenylamine (d_6 -DMSO). Inset scheme showing the protons assignments to amine ligand.

Figure S6. Cyclic voltamograms of the hexamolybdate (black) compared to compounds 1 (red) and 2 (blue) measured in CH_3CN and (*n*-Bu₄NClO₄) as the supporting electrolyte at scan rate of 100 mV/s.

Figure S7. Square-Wave voltamograms of compound 1 (red), compound 2 (blue), hexamolybdate (black) and organometallic precursor fac-[(phen)(H₂O)Re(CO)₃]⁺ (orange) measured in CH₃CN and (*n*-Bu₄NClO₄) as the supporting electrolyte. All measurement were referred to Fc/Fc⁺ potential.

Figure S8. Cyclic voltamograms of the hexamolybdate (black) compared to compounds 1 (red) and 2 (blue) measured in CH₃CN and (n-Bu₄NClO₄) as the supporting electrolyte at scan rate of 100 mV/s. All measurement were referred to Fc/Fc⁺ potential.

Figure S9. UV-vis absorption spectra of compound 1 (red) and hexamolybdates (blue).

Figure S10. UV-Vis absorption spectra of compound 1 (red), compound 2 (blue) and organometallic precursor (black).

Figure S11. UV-vis absorption spectra of compound **1** exposed to UV irradiation (365 nm) at different times.

Figure S12. Frontier orbitals surfaces of Mo₆, compounds 1 and 2.

Figure S13. Overlapped plot of experimental spectra and oscillator strength calculated by TD-DFT methods, employing dichloromethane (DCM) and dimethylformamide (DMF) as continuum solvents for compound **2**.