Reactions of persulfides with the heme cofactor of oxidized myoglobin and microperoxidase 11: reduction or coordination.

Erwan Galardon,*a Florian Huguet, Christian Herrero, Rémy Ricoux, Isabelle Artauda and Dominique Padovania

Figure S1. UV-Vis spectra (top) and X-band EPR spectra (bottom) recorded at 10 K of (TMP)FeOH¹ (2 μ M in toluene, field modulation amplitude of 0.1 mT, microwave power of 10 mW) before (red) and after (blue) addition of 5 equivalents of tBuSSH,² under anaerobic conditions.

Figure S2. Variations of the current intensity recorded over time using the ISO-H2S-2 sensor upon the addition of P* (100 μ M), then NAcMP11(III) (3 μ M) then Na₂S (2 μ M) in HEPES buffer (50 mM, pH 7.4, DTPA 1mM) under anaerobic conditions.

Figure S3. High Resolution mass spectrum of a mixture of NAcMP1(III) (20 μ M) and P* (500 μ M) in 10 mM Tris buffer (pH = 7.4) recorded in ESI+ mode. The deviation from the theoretical mass was calculated with Xcalibur 2.2.

Figure S4. UV-Vis spectra recorded after the successive additions of 20 μ M dithionite (green), 100 μ M of P* (blue) and 10 mM NMI (cyan) to a solution of NAcMP11(III) (2 μ M) (red) in HEPES buffer (50 mM, pH 7.4, DTPA 1mM) under anaerobic conditions.

Figure S5. UV-vis spectra of metMb(III) (3.5 μ M) before (red) and after (green) reactivity for 15 min with GSSH generated from 2.5 mM GSH and 0.5 mM PhSO₂SNa in HEPES buffer (50 mM, pH 7.4, DTPA 1mM) under aerobic conditions.

Figure S6. Evolution of the UV-vis spectrum of the product initially formed by the reaction between metMb(III) (3.5 μ M) and P* (100 μ M) (red trace), and 15 minutes after addition of D-glucose (20 mM), glucose oxidase (100 U) and catalase (1000U) in HEPES buffer (50 mM, pH 7.4, DTPA 1mM) (green trace).

Figure S7. Representative experiments showing the variation of absorbance over time when metMb(III) (3.5 μ M) is allowed to react with P* (50 μ M) under anaerobic (A, formation of deoxyMb(II) recorded at 433 nm) or aerobic (B, formation of oxyMb(II) recorded at 581 nm) conditions. The data were fitted with an exponential function (A(t) =y0+a.(1-exp(-kxt))) and the resulting parameters are reported on the plots.

Figure S8. HPLC-MS spectra of the mixture obtained after the incubation of P* (100 μ M) alone (left panel) or in the presence of 50 μ M FerrylMb(IV) (right panel) in Tris buffer (10 mM, pH 7.4) for 30 minutes.

Figure S9. Zoom of the visible region (500-700 nm) of the UV-vis spectra obtained after the addition of 200 μ M of P* to ferrylMb(IV) (2 μ M) in the presence (red trace) or absence (blue trace) of catalase.

Figure S10. UV-Vis spectrum of the product obtained after mixing FerrylMb(IV) (2 μ M) with Na₂S (2 μ M) in HEPES buffer (50 mM, pH 7.4, DTPA 1mM) under anaerobic conditions.

Supplementary references:

 Cheng, R. J.; Latosgrazynski, L.; Balch, A. L., Preparation and Characterization of Some Hydroxy Complexes of Iron(Iii) Porphyrins *Inorg. Chem.* **1982**,*21* (6), 2412-2418.
Derbesy, G.; Harpp, D. N.; Rather, B.; Carroll, G., Preparation and characterization of tert-butyl hydrodisulfide *Sulfur Lett.* **1992**,*14* (4), 199-204.