## **Supporting Information**

Synthesis and photo-/electro-catalytic properties of 3D POMOF material based on interpenetrated copper coordination polymer linked by in-situ dual-ligands and Dawson-type phosphotungstate

Ling-yu Fan,<sup>a,b</sup> Kai Yu,<sup>a,b\*</sup> Jing-hua Lv,<sup>a</sup> He Zhang,<sup>a,b</sup> Zhan-hua Su,<sup>a,b</sup> Lu Wang,<sup>c</sup> Chunmei Wang ,<sup>a,b</sup> Bai-bin Zhou<sup>a,b\*</sup>

1. Structural figure



Fig. S1 Stick-ellipsoid representation of molecule structure of compound 1



**Fig. S2** The coordination environment of Cu/pz/pzc big ring. Symmetry code: A: -1x, 2-y, 2-z; B: -2-x, 3-y, 2-z; C: -2+x, 2+y, 1+z; D: -3-x, 4-y, 2-z; E: -3+x, 3+y, 1+z; F: -4+x, 4+y, 1+z; G: x, -1+y, z; I: -4+x, 3+y, 1+z.



Fig. S3 The 6-connected 2-D Cu/pz/pzc metal organic layer.



Fig. S4 The 2-D layer structure is extended by  $Cu_5$ - $O_{63}$  along bc plane to form interpenetrated structure.



Fig. S5 The 2-D layer structure is extended by  $Cu_6-O_{68}$  along ac plane to form interpenetrated structure.

## 2. Structural data

| W(1)-O(10)    | 1.691(10) | W(1)-O(5)     | 1.898(10) | W(1)-O(2)        | 1.900(10) |
|---------------|-----------|---------------|-----------|------------------|-----------|
| W(1)-O(3)     | 1.907(10) | W(1)-O(9)     | 1.919(10) | W(1)-O(18)       | 2.346(10) |
| W(2)-O(58)    | 1.697(11) | W(2)-O(1)     | 1.879(10) | W(2)-O(2)        | 1.888(10) |
| W(2)-O(35)    | 1.910(10) | W(2)-O(4)     | 1.947(10) | W(2)-O(62)       | 2.370(10) |
| W(3)-O(28)    | 1.712(10) | W(3)-O(41)    | 1.876(10) | W(3)-O(8)        | 1.895(10) |
| W(3)-O(9)     | 1.908(10) | W(3)-O(24)    | 1.946(11) | W(3)-O(18)       | 2.355(10) |
| W(4)-O(53)    | 1.702(10) | W(4)-O(25)    | 1.896(10) | W(4)-O(7)        | 1.901(11) |
| W(4)-O(43)    | 1.904(10) | W(4)-O(1)     | 1.924(10) | W(4)-O(50)       | 2.396(10) |
| W(5)-O(20)    | 1.692(10) | W(5)-O(3)     | 1.894(10) | W(5)-O(25)       | 1.900(10) |
| W(5)-O(26)    | 1.920(10) | W(5)-O(6)     | 1.947(10) | W(5)-O(19)       | 2.335(10) |
| W(6)-O(57)    | 1.704(11) | W(6)-O(26)    | 1.898(10) | W(6)-O(56)       | 1.898(10) |
| W(6)-O(11)    | 1.918(10) | W(6)-O(8)     | 1.917(11) | W(6)-O(19)       | 2.377(10) |
| W(7)-O(15)    | 1.722(11) | W(7)-O(22)    | 1.886(11) | W(7)-O(4)        | 1.902(9)  |
| W(7)-O(12)    | 1.922(10) | W(7)-O(5)     | 1.929(10) | W(7)-O(29)       | 2.396(11) |
| W(8)-O(51)    | 1.712(10) | W(8)-O(32)    | 1.895(11) | W(8)-O(14)       | 1.897(10) |
| W(8)-O(30)    | 1.906(10) | W(8)-O(37)    | 1.957(11) | W(8)-O(45)       | 2.390(10) |
| W(9)-O(61)    | 1.712(10) | W(9)-O(6)     | 1.874(10) | W(9)-O(7)        | 1.919(11) |
| W(9)-O(42)    | 1.918(11) | W(9)-O(14)    | 1.955(10) | W(9)-O(45)       | 2.382(10) |
| W(10)-O(23)   | 1.698(12) | W(10)-O(39)   | 1.871(10) | W(10)-O(11)      | 1.906(10) |
| W(10)-O(37)   | 1.915(11) | W(10)-O(42)   | 1.944(10) | W(10)-O(45)      | 2.387(11) |
| W(11)-O(34)   | 1.700(11) | W(11)-O(40)   | 1.887(11) | W(11)-O(47)      | 1.904(10) |
| W(11)-O(16)   | 1.917(10) | W(11)-O(35)   | 1.924(10) | W(11)-O(62)      | 2.365(10) |
| W(12)-O(59)   | 1.702(12) | W(12)-O(56)   | 1.899(11) | W(12)-O(46)      | 1.903(11) |
| W(12)-O(52)   | 1.917(11) | W(12)-O(39)   | 1.973(11) | W(12)-O(31)      | 2.369(10) |
| W(13)-O(33)   | 1.704(10) | W(13)-O(55)   | 1.873(10) | W(13)-O(16)      | 1.880(10) |
| W(13)-O(43)   | 1.902(10) | W(13)-O(32)   | 1.936(11) | W(13)-O(50)      | 2.338(10) |
| W(14)-O(60)   | 1.699(11) | W(14)-O(52)   | 1.878(11) | W(14)-O(41)      | 1.898(11) |
| W(14)-O(36)   | 1.910(11) | W(14)-O(49)   | 1.916(11) | W(14)-O(48)      | 2.361(10) |
| W(15)-O(38)   | 1.701(12) | W(15)-O(21)   | 1.878(11) | W(15)-O(40)      | 1.908(10) |
| W(15)-O(17)   | 1.930(11) | W(15)-O(36)   | 1.939(10) | W(15)-O(48)      | 2.364(11) |
| W(16)-O(54)   | 1.706(10) | W(16)-O(24)   | 1.898(11) | W(16)-O(49)      | 1.908(11) |
| W(16)-O(29)   | 2.378(9)  | W(16)-O(12)   | 1.914(11) | W(16)-O(13)      | 1.926(11) |
| W(17)-O(13)   | 1.903(10) | W(17)-O(44)   | 1.712(12) | W(17)-O(17)      | 1.902(11) |
| W(17)-O(47)   | 1.914(10) | W(17)-O(22)   | 1.940(11) | W(17)-O(29)      | 2.410(11) |
| W(18)-O(27)   | 1.712(11) | W(18)-O(46)   | 1.913(10) | W(18)-O(30)      | 1.920(11) |
| W(18)-O(55)   | 1.938(10) | W(18)-O(31)   | 2.385(10) | W(18)-O(21)      | 1.913(11) |
| P(1)-O(48)    | 1.531(11) | P(1)-O(62)    | 1.527(10) | P(1)-O(18)       | 1.543(11) |
| P(1)-O(29)    | 1.563(11) | P(2)-O(31)    | 1.519(10) | P(2)-O(19)       | 1.537(10) |
| P(2)-O(50)    | 1.540(11) | P(2)-O(45)    | 1.572(11) | Cu(1)-O(20)      | 2.284(10) |
| Cu(1)-O(9)    | 2.688     | Cu(1)-N(4)    | 1.908(14) | Cu(1)-N(1)       | 1.924(13) |
| Cu(2)-N(16)#1 | 1.960(15) | Cu(2)-N(7)    | 1.981(14) | Cu(2)-N(5)       | 2.055(14) |
| Cu(3)-O(65)   | 2.191(14) | Cu(3)-O(33)   | 2.230(11) | Cu(3)-N(10)      | 1.951(14) |
| Cu(3)-N(3)    | 1.967(13) | Cu(4)-O(35)   | 2.521     | Cu(4)-O(57)      | 2.713     |
| Cu(4)-N(12)   | 1.912(13) | Cu(4)-N(15)   | 1.920(15) | Cu(5)-O(64)#3    | 2.378(13) |
| Cu(5)-O(28)   | 2.687     | Cu(5)-O(63)   | 2.738     | Cu(5)-N(8)       | 1.923(14) |
| Cu(5)-N(13)   | 1.944(17) | Cu(6)-O(71)   | 1.875(16) | Cu(6)-O(68)      | 1.925(16) |
| Cu(6)-O(36)   | 2.771     | Cu(6)-N(14)   | 1.941(16) | Cu(6)-N(11)      | 1.991(14) |
| Cu(7)-O(73)   | 2.00(2)   | Cu(7)-O(74)#2 | 2.028(17) | Cu(7)-O(67)      | 2.08(2)   |
| Cu(7)-N(6)    | 1.951(15) | Cu(8)-O(70)   | 1.947(10) | Cu(8)-O(70)#4    | 1.947(10) |
| Cu(8)-O(58)   | 2.539     | Cu(8)-O(58)#4 | 2.539     | Cu(8)-N(9)       | 1.966(13) |
| Cu(8)-N(9)#4  | 1 966(13) | Cu(9)-O(63)#5 | 1 967(12) | $C_{U}(9)-O(63)$ | 1 967(12) |

Table S1 Selected bond lengths (Å) and bond angles (°) of compound 1  $\,$ 

| Cu(9)-O(15)#5       | 2.626      | Cu(9)-O(15)         | 2.626      | Cu(9)-N(2)#5         | 1.940(13) |
|---------------------|------------|---------------------|------------|----------------------|-----------|
| Cu(9)-N(2)          | 1.940(13)  |                     |            |                      |           |
| O(10)-W(1)-O(5)     | 97.0(5)    | O(58)-W(2)-O(1)     | 98.8(5)    | O(28)-W(3)-O(41)     | 104.4(5)  |
| O(10)-W(1)-O(2)     | 100.6(5)   | O(58)-W(2)-O(2)     | 103.2(5)   | O(28)-W(3)-O(8)      | 100.0(5)  |
| O(10)-W(1)-O(3)     | 98.5(5)    | O(58)-W(2)-O(35)    | 98.9(5)    | O(28)-W(3)-O(9)      | 98.3(5)   |
| O(10)-W(1)-O(9)     | 101.2(5)   | O(58)-W(2)-O(4)     | 96.1(5)    | O(28)-W(3)-O(24)     | 95.7(5)   |
| O(10)-W(1)-O(18)    | 173.7(4)   | O(58)-W(2)-O(62)    | 171.4(5)   | O(28)-W(3)-O(18)     | 170.4(4)  |
| O(53)-W(4)-O(25)    | 104.0(5)   | O(20)-W(5)-O(3)     | 98.3(5)    | O(57)-W(6)-O(26)     | 99.5(5)   |
| O(53)-W(4)-O(7)     | 96.7(5)    | O(20)-W(5)-O(25)    | 100.3(4)   | O(57)-W(6)-O(56)     | 102.4(5)  |
| O(53)-W(4)-O(43)    | 100.5(5)   | O(20)-W(5)-O(26)    | 101.0(5)   | O(57)-W(6)-O(11)     | 97.9(5)   |
| O(53)-W(4)-O(1)     | 99.2(5)    | O(20)-W(5)-O(6)     | 96.0(4)    | O(57)-W(6)-O(8)      | 98.6(5)   |
| O(53)-W(4)-O(50)    | 172.2(4)   | O(20)-W(5)-O(19)    | 173.8(4)   | O(57)-W(6)-O(19)     | 172.2(4)  |
| O(15)-W(7)-O(22)    | 99.7(5)    | O(51)-W(8)-O(32)    | 102.0(5)   | O(61)-W(9)-O(6)      | 103.9(5)  |
| O(15)-W(7)-O(4)     | 102.9(5)   | O(51)-W(8)-O(14)    | 100.1(5)   | O(61)-W(9)-O(7)      | 102.5(5)  |
| O(15)-W(7)-O(12)    | 100.2(5)   | O(51)-W(8)-O(30)    | 103.4(5)   | O(61)-W(9)-O(42)     | 100.6(5)  |
| O(15)-W(7)-O(5)     | 104.1(5)   | O(51)-W(8)-O(37)    | 100.6(5)   | O(61)-W(9)-O(14)     | 100.2(5)  |
| O(15)-W(7)-O(29)    | 170.0(4)   | O(51)-W(8)-O(45)    | 170.8(5)   | O(61)-W(9)-O(45)     | 170.4(5)  |
| O(23)-W(10)-O(39)   | 101.5(5)   | O(34)-W(11)-O(40)   | 103.2(5)   | O(59)-W(12)-O(56)    | 102.2(5)  |
| O(23)-W(10)-O(11)   | 102.9(5)   | O(34)-W(11)-O(47)   | 99.9(5)    | O(59)-W(12)-O(46)    | 100.1(5)  |
| O(23)-W(10)-O(37)   | 99.6(5)    | O(34)-W(11)-O(16)   | 96.4(5)    | O(59)-W(12)-O(52)    | 99.3(5)   |
| O(23)-W(10)-O(42)   | 99.4(5)    | O(34)-W(11)-O(35)   | 99.6(5)    | O(59)-W(12)-O(39)    | 97.0(5)   |
| O(23)-W(10)-O(45)   | 169.9(4)   | O(34)-W(11)-O(62)   | 172.2(4)   | O(59)-W(12)-O(31)    | 173.8(5)  |
| O(33)-W(13)-O(55)   | 101.3(5)   | O(60)-W(14)-O(52)   | 99.3(5)    | O(38)-W(15)-O(21)    | 97.3(5)   |
| O(33)-W(13)-O(16)   | 99.1(5)    | O(60)-W(14)-O(41)   | 101.6(5)   | O(38)-W(15)-O(40)    | 101.2(5)  |
| O(33)-W(13)-O(43)   | 99.8(4)    | O(60)-W(14)-O(36)   | 100.4(5)   | O(38)-W(15)-O(17)    | 98.5(5)   |
| O(33)-W(13)-O(32)   | 95.7(5)    | O(60)-W(14)-O(49)   | 97.1(5)    | O(38)-W(15)-O(36)    | 100.3(5)  |
| O(33)-W(13)-O(50)   | 172.8(4)   | O(60)-W(14)-O(48)   | 174.5(5)   | O(38)-W(15)-O(48)    | 174.0(5)  |
| O(54)-W(16)-O(24)   | 103.6(5)   | O(44)-W(17)-O(17)   | 103.0(5)   | O(27)-W(18)-O(21)    | 97.9(5)   |
| O(54)-W(16)-O(49)   | 102.3(5)   | O(44)-W(17)-O(13)   | 101.6(5)   | O(27)-W(18)-O(46)    | 97.6(5)   |
| O(54)-W(16)-O(12)   | 101.3(5)   | O(44)-W(17)-O(47)   | 103.0(5)   | O(27)-W(18)-O(30)    | 99.0(5)   |
| O(54)-W(16)-O(13)   | 99.1(5)    | O(44)-W(17)-O(22)   | 101.8(5)   | O(27)-W(18)-O(55)    | 104.2(5)  |
| O(54)-W(16)-O(29)   | 170.2(5)   | O(44)-W(17)-O(29)   | 171.5(5)   | O(27)-W(18)-O(31)    | 170.7(4)  |
| O(48)-P(1)-O(62)    | 112.6(6)   | O(48)-P(1)-O(18)    | 111.3(6)   | O(48)-P(1)-O(29)     | 106.9(6)  |
| O(31)-P(2)-O(19)    | 110.9(5)   | O(31)-P(2)-O(50)    | 112.6(6)   | O(31)-P(2)-O(45)     | 107.4(6)  |
| N(4)-Cu(1)-N(1)     | 160.1(5)   | N(4)-Cu(1)-O(20)    | 88.7(5)    | N(1)-Cu(1)-O(20)     | 107.4(5)  |
| N(16)#1-Cu(2)-N(7)  | 139.1(6)   | N(16)#1-Cu(2)-N(5)  | 110.9(6)   | N(7)-Cu(2)-N(5)      | 109.9(6)  |
| N(10)-Cu(3)-N(3)    | 145.0(6)   | N(10)-Cu(3)-O(65)   | 113.0(5)   | N(3)-Cu(3)-O(65)     | 94.7(5)   |
| N(10)-Cu(3)-O(33)   | 97.0(5)    | N(3)-Cu(3)-O(33)    | 95.2(5)    | O(65)-Cu(3)-O(33)    | 106.2(5)  |
| N(12)-Cu(4)-N(15)   | 168.1(7)   | N(8)-Cu(5)-N(13)    | 147.3(7)   | N(8)-Cu(5)-O(64)#3   | 102.9(5)  |
| N(13)-Cu(5)-O(64)#3 | 109.8(6)   | O(71)-Cu(6)-O(68)   | 167.8(7)   | O(71)-Cu(6)-N(14)    | 101.5(7)  |
| O(68)-Cu(6)-N(14)   | 83.0(7)    | O(71)-Cu(6)-N(11)   | 82.9(6)    | O(68)-Cu(6)-N(11)    | 96.3(6)   |
| N(14)-Cu(6)-N(11)   | 162.1(6)   | N(6)-Cu(7)-O(73)    | 174.0(8)   | N(6)-Cu(7)-O(74)#2   | 81.8(6)   |
| O(73)-Cu(7)-O(74)#2 | 93.6(9)    | N(6)-Cu(7)-O(67)    | 92.0(8)    | O(73)-Cu(7)-O(67)    | 93.7(9)   |
| O(74)#2-Cu(7)-O(67) | 156.4(8)   | O(70)-Cu(8)-O(70)#4 | 180.0(6)   | O(70)-Cu(8)-N(9)     | 84.0(5)   |
| O(70)#4-Cu(8)-N(9)  | 96.0(5)    | O(70)-Cu(8)-N(9)#4  | 96.0(5)    | O(70)#4-Cu(8)-N(9)#4 | 84.0(5)   |
| N(9)-Cu(8)-N(9)#4   | 179.999(3) | N(2)-Cu(9)-N(2)#5   | 179.999(2) | N(2)-Cu(9)-O(63)     | 83.5(5)   |
| N(2)#5-Cu(9)-O(63)  | 96.5(5)    | N(2)-Cu(9)-O(63)#5  | 96.5(5)    | N(2)#5-Cu(9)-O(63)#5 | 83.5(5)   |
| O(63)-Cu(9)-O(63)#5 | 180.000(2) |                     |            |                      |           |

Symmetry transformations used to generate equivalent atoms: #1 -x,-y,-z; #2 -x+1/2,-y+1/2,-z

## 2. Physical characterization



Fig. S6 IR spectra of compound 1



Fig. S7. The PXRD contrast curves of compound 1



Fig. S8 TG curve of compound 1



Fig. S9 The UV-vis spectra of compound 1 in solid state at room temperature.



Fig. S10 The XPS spectrum of compound 1.



**Fig. S11** Cyclic voltammograms of **1-CPE** (scan rates from inner to outer: 20,30, 40, 60, 80, 100, 120, 150, 200, 250, 300, 350, 400, 450, 500 mV s-1). Potentials vs. SCE.



**Fig. S12** Cyclic voltammograms of **1-CPE** in the 1.0 M H2SO4 solution at scan rate of 20 mVs<sup>-1</sup>. Potentials vs. SCE.