Electronic Supporting Information

Facile ring-opening of THF at lithium induced by a pendant Si-H bond and BPh₃

Debabrata Mukherjee, Hassan Osseili, Thomas P. Spaniol, and Jun Okuda*

Institute of Inorganic Chemistry, RWTH Aachen University,

Landoltweg 1, 52056 Aachen, Germany.

General remarks

All manipulations were performed under argon atmosphere using standard Schlenk or glove box techniques. Prior to use, glasswares were dried overnight at 130 °C and solvents were dried, distilled and degassed using standard methods. (Me₃TA CD)H,^{S1} Me₄TACD,^{S2} [M{N(SiHMe₂)₂],^{S3} and B(C₆F₅)₃^{S4} were synthesized following literature procedures. BPh₃ (95%) was purchased from abcr and purified by sublimation. NMR measurements were performed on a Bruker DRX 400 at ambient temperature unless otherwise mentioned. The chemical shifts (δ ppm) in the ¹H and ¹³C{¹H} NMR spectra were referenced to the residual proton signals of the deuterated solvents and reported relative to tetramethylsilane.^{S5} Abbreviations for NMR spectra: s (singlet), d (doublet), t (triplet), sep (septet), br (broad), IR spectra were measured on KBr pellets using an AVATAR 360 FT-IR spectrometer. Abbreviations for IR spectra: w (weak), m (medium), s (strong), br (broad). Elemental analyses were performed on an *elementar vario EL* machine. X-ray diffraction data were collected on a Bruker APEX II diffractometer. Single crystal diffraction data of **3** and **7** are reported in crystallographic information file (cif) accompanying this document.

Synthetic Procedures and spectroscopic data for 1-5 and 7

$[\{(Me_3TACD)H\}Li\{N(SiHMe_2)_2\}] (1)$

A mixture of [Li{(N(SiHMe₂)₂}] (0.100 g, 0.718 mmol) and LH (0.154 g, 0.718 mmol) in *n*-pentane (5 mL) was stirred for 0.5 h at room temperature. Removal of the volatiles under reduced pressure afforded analytically pure **1** (0.240 g, 0.679 mmol, 95%) as a colorless powder. ¹H NMR (400 MHz, benzene-*d*₆): δ 5.07 (sept, ¹*J*_{SiH} = 167 Hz, 2 H, Si*H*Me₂), 2.36-2.24 (m, 2 H, *CH*₂), 2.25 (s, 6 H, *NMe*), 2.19 (s, 3 H, *NMe*), 1.93-1.74 (m, 14 H, *CH*₂), 1.37

(br, m, 1 H, N*H*), 0.59 (d, ${}^{3}J_{HH} = 3.0$ Hz, 12 H, SiH*Me*₂). ${}^{13}C\{{}^{1}H\}$ NMR (100 MHz, benzene*d*₆): δ 56.0 (*C*H₂), 54.5 (*C*H₂), 53.4 (*C*H₂), 45.2 (*C*H₂), 44.4 (N*Me*), 44.4 (N*Me*), 7.3 (SiH*Me*₂). ${}^{29}Si\{{}^{1}H\}$ NMR (80 MHz, benzene-*d*₆): δ -28.5. IR (KBr, cm⁻¹): 2039 (s, v_{SiH}). Anal. Calcd. for C₁₅H₄₀N₅Si₂Li: C, 50.90; H, 11.40; N, 19.80. Found: C, 50.45; H, 11.15; N, 19.69.

Figure S2. ¹³C{¹H} NMR spectrum of **1** in benzene- d_6 .

Figure S3. ²⁹Si{¹H} NMR spectrum of **1** in benzene- d_6 .

 $v(cm^{-1})$

2000

2500

1500

1000

3000

3500

Figure S5. Solid-state IR (KBr) spectrum of 1.

$[\{(Me_3TACD)H\}Na\{N(SiHMe_2)_2\}] (2)$

A mixture of $[Na\{(N(SiHMe_2)_2\}]$ (0.029 g, 0.187 mmol) and LH (0.040 g, 0.187 mmol) in *n*-pentane (5 mL) was stirred for 0.5 h at room temperature. Removal of the volatiles under reduced pressure afforded analytically pure **2** (0.065 g, 0.176 mmol, 94%) as a colorless powder. ¹H NMR (400 MHz, benzene-*d*₆): δ 5.37 (sept, ¹*J*_{SiH} = 164 Hz, 2 H, Si*H*Me₂), 2.17 (br, m, 2 H, C*H*₂), 2.10 (s, 6 H, N*Me*), 2.07 (s, 3 H, N*Me*), 1.87-1.59 (br, m, 14 H, C*H*₂), 0.69 (br, s, 1 H, N*H*), 0.61 (d, ³*J*_{HH} = 2.8 Hz, 12 H, SiH*Me*₂). ¹³C{¹H} NMR (100 MHz, benzene-*d*₆): δ 55.4 (*C*H₂), 53.9 (*C*H₂), 53.2 (*C*H₂), 44.5 (*C*H₂), 44.1 (N*Me*), 44.0 (N*Me*), 7.4 (SiH*Me*₂). ²⁹Si{¹H} NMR (80 MHz, benzene-*d*₆): δ -31.9. IR (KBr, cm⁻¹): 1990 (s, v_{SiH}). Anal. Calcd. for C₁₅H₄₀N₅Si₂Na: C, 48.74; H, 10.91; N, 18.94. Found: C, 48.56; H, 10.43; N, 19.22.

Figure S7. ¹³C $\{^{1}H\}$ NMR spectrum of **2** in benzene- d_{6} .

Figure S9. Solid-state IR (KBr) spectrum of 2.

$[\{(Me_3TACD)H\}K\{N(SiHMe_2)_2\}] (3)$

A mixture of $[K\{(N(SiHMe_2)_2\}]$ (0.040 g, 0.233 mmol) and LH (0.050 g, 0.233 mmol) in *n*-pentane (5 mL) was stirred for 0.5 h at room temperature. Removal of the volatiles under reduced pressure afforded analytically pure **3** (0.085 g, 0.220 mmol, 94%) as a colorless powder. ¹H NMR (400 MHz, benzene-*d*₆): δ 5.34 (sept, ¹*J*_{SiH} = 161 Hz, 2 H, Si*H*Me₂), 2.26-2.22 (m, 4 H, C*H*₂), 2.09 (s, 6 H, N*Me*), 2.05 (s, 3 H, N*Me*), 1.98-1.91 (m, 12 H, C*H*₂), 1.21 (m, 1 H, N*H*), 0.49 (d, ³*J*_{HH} = 2.8 Hz, 12 H, SiH*Me*₂). ¹³C{¹H} NMR (100 MHz, benzene-*d*₆): δ 55.7 (*C*H₂), 54.6 (*C*H₂), 53.7 (*C*H₂), 45.1 (N*Me*), 44.5 (N*Me*), 44.1 (*C*H₂), 7.0 (SiH*Me*₂). ²⁹Si{¹H} NMR (80 MHz, benzene-*d*₆): δ -33.5. IR (KBr, cm⁻¹): 2032 (v_{SiH}), 1964 (v_{SiH}). Anal. Calcd. for C₁₅H₄₀N₅Si₂K: C, 46.70; H, 10.45; N, 18.15. Found: C, 46.36; H, 10.17; N, 18.19.

Figure S12. ²⁹Si{¹H} NMR spectrum of **3** in benzene- d_6 .

Figure S13. Solid-state IR (KBr) spectrum of 3.

[Li{(Me₃TACD)SiMe₂N(SiHMe₂)}] (4)

A solution of **1** (0.100 g, 0.283 mmol) in 0.5 mL of benzene- d_6 was heated to 60 °C for 12 h. Progress of the reaction was monitored time to time by ¹H NMR spectroscopy. After completion, all the volatiles were removed under reduced pressure to obtain a colorless solid. The solid was recrystallized from a concentrated *n*-pentane solution at -35 °C overnight and dried under vacuum to give analytically pure **4** (0.086 g, 0.244 mmol, 86%) as a white powder. ¹H NMR (400 MHz, benzene- d_6): δ 5.46 (sept, ¹ J_{SiH} = 169 Hz, 1 H, SiHMe₂), 3.47 (m, 2 H, CH₂), 2.30-2.26 (br, m, 2 H, CH₂), 2.14-2.07 (br, m, 11 H, NMe and CH₂), 1.92-1.70 (br, m, 10 H, CH₂), 0.50 (s, 6 H, SiMe₂), 0.48 (d, ³ J_{HH} = 2.8 Hz, 6 H, SiHMe₂). ¹³C {¹H} NMR (100 MHz, benzene- d_6): δ 61.5 (CH₂), 56.8 (CH₂), 50.5 (CH₂), 44.9 (NMe), 42.2 (NMe), 6.6 (SiHMe₂), 5.5 (SiMe₂). ²⁹Si {¹H} NMR (80 MHz, benzene- d_6): δ -16.4 (SiMe₂), -35.2 (SiHMe₂). IR (KBr, cm⁻¹): 2000 (s, v_{SiH}). Anal. Calcd. for C₁₅H₃₈N₅Si₂Li: C, 51.24; H, 10.89; N, 19.92. Found: C, 50.96; H, 10.77; N, 19.69.

Figure S16. ²⁹Si $\{^{1}H\}$ NMR spectrum of **4** in benzene- d_{6} .

Figure S18. Solid-state IR (KBr) spectrum of 4.

[Na{(Me₃TACD)SiMe₂N(SiHMe₂)}] (5)

A solution of **2** (0.150 g, 0.406 mmol) in 0.5 mL of benzene- d_6 was heated to 80 °C for 48 h. Progress of the reaction was monitored time to time by ¹H NMR spectroscopy. After completion, all the volatiles were removed under reduced pressure to obtain a light brown colored solid. The solid was recrystallized from a concentrated *n*-pentane solution at -35 °C overnight and dried under vacuum to give analytically pure **5** (0.095 g, 0.258 mmol, 64%) as a white powder. ¹H NMR (400 MHz, benzene- d_6): δ 5.76 (sept, ¹ J_{SiH} = 167 Hz, 1 H, SiHMe₂), 3.21-3.15 (m, 2 H, CH₂), 2.27-2.21 (m, 2 H, CH₂), 2.14-2.08 (m, 2 H, CH₂), 2.0 (br, m, 8 H,

NMe and CH₂), 1.84-1.76 (m, 4 H, CH₂), 1.67-1.61 (m, 2 H, CH₂), 1.54-148 (m, 5 H, NMe and CH₂), 0.61 (d, ${}^{3}J_{HH} = 2.8$ Hz, 6 H, SiHMe₂), 0.54 (s, 6 H, SiMe₂). ${}^{13}C{}^{1}H{}$ NMR (100 MHz, benzene-d₆): δ 57.5 (CH₂), 54.4 (CH₂), 53.7 (CH₂), 48.1 (CH₂), 43.5 (NMe), 42.8 (NMe), 7.0 (SiHMe₂), 5.2 (SiMe₂). ${}^{29}Si{}^{1}H{}$ NMR (80 MHz, benzene-d₆): δ -19.0 (SiMe₂), -37.6 (SiHMe₂). IR (KBr, cm⁻¹): 2000 (s, v_{SiH}). Anal. Calcd. for C₁₅H₃₈N₅Si₂Na: C, 49.00; H, 10.42; N, 19.05. Found: C, 48.67; H, 10.08; N, 19.26.

Figure S19. ¹H NMR spectrum of **5** in benzene- d_6 .

Figure S20. ¹³C{¹H} NMR spectrum of 5 in benzene- d_6 .

Figure S22. Solid-state IR (KBr) spectrum of 5.

[Li{(Me₃TACD)SiMe₂N(SiMe₂OnBu)BPh₃}] (7)

Slow *n*-pentane diffusion into a solution of BPh₃ (0.071 g, 0.293 mmol) and **4** (0.103 g, 0.293 mmol) in 1 mL of THF at -35 °C over two days precipitated a white solid. The solid was isolated by decantation and dried under vacuum to obtain analytically pure **7** (0.172 g, 0.258 mmol, 88%) as a white powder. X-ray quality single crystals were also obtained in a similar fashion. ¹H NMR (400 MHz, benzene-*d*₆): δ 7.69-7.66 (m, 6 H, *o*-Ph), 7.33-7.29 (m, 3 H, *p*-Ph), 7.27-7.23 (m, 6 H, *m*-Ph), 3.91 (m, 2 H, OCH₂CH₂CH₂CH₃), 3.47 (m, 2 H, CH₂), 2.28-2.25 (m, 2 H, CH₂), 2.18 (br, s, 6 H, NMe), 2.13 (br, s, 3 H, NMe), 2.10-2.06 (m, 2 H, CH₂), 1.94-1.55 (br, m, 12 H, CH₂ and OCH₂CH₂CH₂CH₃), 1.02 (t, ³J_{HH} = 7.3 Hz, 3 H, OCH₂CH₂CH₂CH₂CH₃), 0.52 (s, 6 H, SiMe₂), 0.41 (s, 6 H, SiMe₂). ¹³C{¹H} NMR (100 MHz, benzene-*d*₆): δ 139.3 (*Ph*), 131.7 (*Ph*), 128.1 (*Ph*), 68.2 (OCH₂CH₂CH₂CH₂CH₃), 61.4 (*C*H₂), 56.6

(CH₂), 53.5 (CH₂), 50.4 (CH₂), 44.7 (NMe), 42.5 (NMe), 36.8 (OCH₂CH₂CH₂CH₂CH₃), 20.4 (OCH₂CH₂CH₂CH₃), 14.9 (OCH₂CH₂CH₂CH₃), 5.6 (SiMe₂), 4.0 (SiMe₂). ¹¹B NMR (128 MHz, THF- d_8): δ 67.9 (br, s). ²⁹Si{¹H} NMR (80 MHz, THF- d_8): δ -18.6 (SiMe₂), -22.1 (SiMe₂). Anal. Calcd. for C₃₇H₆₁N₅OSi₂BLi: C, 66.74; H, 9.23; N, 10.52. Found: C, 66.66; H, 9.22; N, 10.67.

Figure S23. ¹H NMR spectrum of **7** in benzene- d_6 .

Figure S24. ¹³C $\{^{1}H\}$ NMR spectrum of **7** in benzene-*d*₆.

Figure S27. Solid-state IR (KBr) spectrum of 7.

An NMR-scale reaction between BPh₃ and **4** in THF- d_8 showed immediate completion of ring-opening within <5 min to give Li[(Me₃TACD)SiMe₂NSiMe₂{O(CD₂)₃CD₂H}BPh₃] (**7**- d_8). NMR spectroscopic characterization indicates the presence of free BPh₃. ¹H NMR (400 MHz, THF- d_8): δ 7.55-7.52 (m, 6 H, *o*-Ph), 7.34-7.32 (m, 9 H, *m*-Ph and *p*-Ph), 3.51-3.44 (m, 2 H, CH₂), 2.79-2.72 (m, 2 H, CH₂), 2.62-2.46 (m, 8 H, CH₂), 2.40 (s, 3 H, NMe), 2.34 (s, 6 H, NMe), 2.40-2.34 (m, 2 H, CH₂), 2.12-2.06 (m, 2 H, CH₂), 0.91-0.84 (m, 1 H, OCD₂CD₂CD₂CD₂H), 0.04 (s, 6 H, SiMe₂), -0.18 (s, 6 H, SiMe₂). ¹³C{¹H} NMR (100 MHz, THF- d_8): δ 147.0 (*ipso-Ph*), 138.1 (*Ph*), 130.0 (*Ph*), 128.0 (*Ph*), 61.9 (CH₂), 57.3 (CH₂), 54.3 (CH₂), 50.9 (CH₂), 45.0 (NMe), 42.8 (NMe), 5.2 (SiMe₂), 3.5 (SiMe₂). ¹¹B NMR (128 MHz, THF- d_8): δ 48.3 (br, s). ²⁹Si{¹H} NMR (80 MHz, THF- d_8): δ -18.5 (*Si*Me₂), -22.1 (*Si*Me₂).

Figure S30. ¹¹B NMR spectrum of **7**- d_8 in THF- d_8 . The borate peaks (1.2 and -2.4 ppm) of low intensities could from impurities or intermediates in the exchange process.

Figure S31. ²⁹Si $\{^{1}H\}$ NMR spectrum of 7-*d*₈ in THF-*d*₈.

Variable temperature NMR spectroscopic analysis of 7 and 7- d_8

NMR spectroscopic characterization of 7 and 7- d_8 in benzene- d_6 and THF- d_8 , respectively suggests that the BPh₃ exists as a 'free' borane in solution at room temperature, contrary to the solid-state structure. 7- d_8 is generated in situ by mixing 4 and BPh₃ in 1:1 ratio in THF- d_8 . A variable temperature NMR spectroscopic analysis of 7 in toluene- d_8 and of 7- d_8 in THF- d_8 shows that the species undergoes temperature-dependent reversible association/dissociation between the zwitterionic 7 and a mixture of neutral 7' and BPh₃.

Figure S32. Variable temperature ¹¹B NMR spectra of 7 in toluene- d_8 .

Figure S33. Variable temperature ⁷Li{¹H} NMR spectra of **7** in toluene- d_8 .

Figure S34. Variable temperature ¹H NMR spectra of **7** in toluene- d_8 .

Figure S35. Variable temperature ¹¹B NMR spectra of a 1:1 mixture of **4** and BPh₃ in THF- d_8 .

Figure S36. Variable temperature ⁷Li{¹H} NMR spectra of a 1:1 mixture of **4** and BPh₃ in THF- d_8 .

Figure S37. Variable temperature ¹H NMR spectra of a 1:1 mixture of 4 and BPh₃ in THF- d_8 .

Kinetic plots for the transformation of 1 to 4

The kinetic measurement for the conversion of **1** to **4** (dehydrogenative Si–N bond formation) was conducted by monitoring the reaction with ¹H NMR spectroscopy. A 0.6 mL of benzened₆ solution containing **1** (0.020 M) and 1,3,5-trimethoxybenzene (0.042 M) as an internal standard) was taken in a Teflon-sealed NMR tube. The NMR tube was placed in an oil bath preheated to 75 °C. Progress of the reaction was examined by removing the tube from the oil bath time to time and measuring the ¹H NMR spectrum at room temperature. No reaction at room temperature ensured that there is no elapsed time during the spectral acquisition. The concentrations of **1** and **4** were determined by comparison of corresponding integrated resonances to the known concentration of 1,3,5-trimethoxybenzene. A first order rate constant (*k*) was obtained by a non-weighted linear least square fit of the data to the first order rate law, $\ln[\mathbf{1}] = \ln[\mathbf{1}]_0 + kt$. A value of $k = 5.9 \pm 0.1 \times 10^{-3} \text{ min}^{-1}$ was derived from the slope.

Figure S38. Plot of [1] vs. time (min) at 75 °C in benzene- d_6 which shows an exponential decay.

Figure S39. Plot of $\ln[1]$ vs. time (min) at 75 °C in benzene- d_6 .

4. X-ray crystallography

Single-crystal X-ray diffraction measurements of 3 and 7 were performed on a Bruker AXS diffractometer equipped with an Incoatec microsource and an APEX area detector using MoK α radiation ($\lambda = 0.71073$ Å), multilayer optics and ω -scans. Temperature control was achieved with an Oxford cryostream 700. The SMART program was used for data collection and unit cell determination; processing of the raw data frame was performed using SAINT+,^{S6} multi scan absorption corrections were applied with SADABS.^{S7} Both compounds are extremely sensitive towards air and moisture and decompose quickly. The structures were solved by direct methods (SIR-92).^{S8} The molecule of **3** shows crystallographic inversion symmetry. The packing of 7 contains THF molecules within the crystal lattice. Within the molecule of 3, the CH_2 carbon atoms of the Me₃TACD ligands C1 – C8 are disordered. The disorder could be modeled with split positions. Within the molecule of 7, the CH_2 carbon atom C14 and the CH₃ carbon atom C15 of the n-butyl group are disordered. This disorder could also be modeled with split positions. The Refinements were performed against F^2 with the program SHELXL-2013 using all reflections.⁵⁹ Hydrogen atoms were included as riding on calculated positions with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(non-H)$, except for the atoms bound to silicon (H1 and H2 in 3) that were localized in difference Fourier maps and refined in their position with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(Si)$. All nonhydrogen atoms were refined anisotropically, except for the atoms C1-C8 in 3 and O3 as well as C42-C47 (of the solvent molecule thf in 7) that were refined with split positions. Refinement results are given in Table S1. Graphical representations were performed with the program DIAMOND.^{S10} CCDC-1544769 (3), -1544770 (7) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Crystallographic Data Centre via www.ccdc.cam.ac.uk/data request/cif.

 Table S1. Crystal data and structure refinement.

	3	7
chemical formula	$C_{30}H_{80}N_{10}K_2Si_4$	C ₃₇ H ₆₁ N ₅ BLiOSi ₂ , 2(C ₄ H ₈ O)
fw (g·mol ⁻¹)	771.60	810.04
space group	$P2_{1}/n$	Pī
crystal size (mm)	0.25×0.20×0.08	0.31×0.27×0.11
unit cell parameters		
<i>a</i> (Å)	9.338(6)	11.063(4)
<i>b</i> (Å)	16.547(11)	11.919(7)
<i>c</i> (Å)	14.617(9)	19.901(11)
α (°)		87.199(12)
β (°)	90.829(15)	77.299(12)
γ (°)		65.471(11)
$V(\text{\AA}^3)$	2258(3)	2326(2)
Z	2	2
<i>T</i> (K)	100(2)	100(2)
$\mu(Mo K_{\alpha}) (mm^{-1})$	0.348	0.120
reflns	12450	22016
independent reflns $(R_{int.})$	3985 (0.2175)	9958 (0.1852)
observed reflns	1736	3277
parameters	214	536
goodness of fit on F^2	0.887	0.835
final R indices		
$R1, wR2$ $[I \ge 2\sigma(I)]$	0.0717, 0.1415	0.0841, 0.1721
R1, wR2 (all data)	0.1809, 0.1783	02292, 0.2000

References

- S1 M. Ohashi, M. Konkol, I. Del Rosal, R. Poteau, L. Maron and J. Okuda, J. Am. Chem. Soc., 2008, 130, 6920-6921.
- S2 J. Coates, D. Hadi and S. Lincoln, Aus. J. Chem., 1982, 35, 903-909.
- S3 J. Eppinger, E. Herdtweck and R. Anwander, *Polyhedron*, 1998, 17, 1195-1201.
- S4 A. G. Massey, and A. J. Park, J.Organomet. Chem., 1964, 2, 245-250.
- S5 G. R. Fulmer, A. J. M. Miller, N. H. Sherden, H. E. Gottlieb, A. Nudelman, B. M. Stoltz, J. E. Bercaw and K. I. Goldberg, *Organometallics*, 2010, **29**, 2176-2179.
- S6 Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
- S7 Bruker, SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004.
- S8 A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, *J. Appl. Crystallogr.*, 1993, **26**, 343-350.
- S9 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112-122.
- S10 Brandenburg, K. DIAMOND, Crystal Impact GbR, Bonn, Germany, 2017.