Supplementary Information

Zinc(II) binding sites in Pra1, a zincophore from *Candida albicans*

Dorota Łoboda, a Magdalena Rowińska-Żyreka

1 1	MNYLLFCLFFAFSVAAPV-TVTRFVDASPTGYDWRADWVKGFFIDSSCNAT MAALL-RLAVLLPLAAPLVATLPTSPVPIAARATPHEPVFFSWDAGAVTSFPIHSSCNAT * ** * . : :*** * .:* * * .:* * *********	50 59	P87020 D3W9Z7	PRA1_CANAL D3W9Z7_ASPFM
51 60	QYNQLSTGLQEAQLLAEHARDHTLRFGSKSPFFRKYFGNDTASAEVVGHFENVVGADKSS QRRQIEAGLNEAVELARHAKAHILRWGNESEIYRKYFGNRPT-MEAVGAYDVIVNGDKAN * .*:.:**:** **.**: * **:*.:* ::******* : *.** :: :* .**:.	110 118	P87020 D3W9Z7	PRA1_CANAL D3W9Z7_ASPFM
111 119	ILFLCDDLDDKCKNDGWAGYWRGSNHSDQTIICDLSFVTRRYLSQLCSGGYTVSKSKTNI VLFRCDNPDGNCALEGWGGHWRGANATSETVICDRSYTTRRWLVSMCSQGYTVAGSETNT :** **: * :* :**.*:**:* :.:*:*** *:.***:* ::*****:* ::***	170 178	P87020 D3W9Z7	PRA1_CANAL D3W9Z7_ASPFM
171 179	FWAGDLLHRFWHLKSIGQLVIEHYADTYEEVLELAQENSTYAVRNSNSLIYYALDVYAYD FWASDLMHRLYHVPAVGQGWVDHFADGYDEVIALAKSNGTESTHDSEALQYFALEAYAFD ***.**:**:*: ::*: ::*: ::*:* ::*:*: *:*:.*:*:*:*:	230 238	P87020 D3W9Z7	PRA1_CANAL D3W9Z7_ASPFM
231 239	VTIPGEGCNGDGTSYKKSDFSSFEDSD-SGS-DSGASSTASSSHQHTDSNPSATTDANSH IAAPGVGCAGESHGPDQGHDTGSASAPASTSTSSSSASGSGATTTPTDSPSATIDVPPN :: ** ** *::: * * .*.:*::.*:	288 298	P87020 D3W9Z7	PRA1_CANAL D3W9Z7_ASPFM
289 299	CHTHADGEVHC- 299 P87020 PRA1 CANAL CHTHEGGQLHCT 310 D3W9Z7 D3W9Z7_ASPFM			

Figure S1. The alignment of Pra1 and Aspf2 sequences (Uniprot accession numbers P87020 and D3W9Z7, respectively). The two zincophores share 43% of identity.

Figure S2. Probable secondary structure of Pra1 predicted by Phyre2.

Figure S3. ESI-MS spectrum of Zn(II)-Ac-IEHY-NH₂ at pH 6.M/L molar ratio = 1:1.

Figure S4. ESI-MS spectrum of Zn(II)-Ac-AEHARDH-NH₂at pH 6.M/L molar ratio = 1:1.

Figure S5. ESI-MS spectrum of Zn(II)-Ac-LHRFWHLK -NH₂at pH 6.M/L molar ratio = 1:1.

Figure S6. ESI-MS spectrum of Zn(II)-Ac-SHQHT-NH₂at pH 6.M/L molar ratio = 1:1.

Figure S7. ESI-MS spectrum of Zn(II)-Ac-SHCHTHADGEVHC-COOH at pH 6.M/L molar ratio = 1:1.

Figure S8. ESI-MS spectrum of Zn(II)-Ac-SHQHTDSNPSATTDANSHCHTHADGEVHC-COOH at pH 6. M/L molar ratio = 1:1.

Figure S9. Distribution diagram for the formation Zn(II) complex with Ac-IEHY-NH₂at 25°C and I=0.1M.

Figure S10. Distribution diagram for the formation Zn(II) complex with Ac-AEHARDH-NH₂ at 25°C and I=0.1M.

Figure S11. Distribution diagram for the formation Zn(II) complex with Ac-LHRFWHLK-NH₂at 25°C and I=0.1M.

Figure S12. Distribution diagram for the formation Zn(II) complex with Ac-SHQHT-NH₂ at 25°C and I=0.1M.

Figure S13. Distribution diagram for the formation Zn(II) complex with Ac-SHCHTHADGEVHC-COOH at 25°C and I=0.1M.

Figure S14. Distribution diagram for the formation Zn(II) complex with Ac-SHQHTDSNPSATTDANSH-CHTHADGEVHC-COOH at 25°C and I=0.1M.

Figure S15. TOCSY spectra of 3 mMAc-SHQHTDSNPSATTDANSHCHTHADGEVHC-COOH, T=298 K, in the absence (black contours) and in presence (blue contours) of 1 Zn(II) equivalent, pH 5.

Figure S16. TOCSY spectra of 3 mMAc-SHQHTDSNPSATTDANSHCHTHADGEVHC-COOH, T=298 K, in the absence (black contours) and in presence (greencontours) of 1 Zn(II) equivalent, pH 6.

Figure S17. TOCSY spectra of 3 mMAc-SHQHTDSNPSATTDANSHCHTHADGEVHC-COOH, T=298 K, in the absence (black contours) and in presence (green contours) of 1 Zn(II) equivalent, pH 6.

Figure S18. TOCSY spectra of 3 mMAc-LHRFWHLK-NH₂, T=298 K, in the absence (black contours) and in presence (bright green contours) of 1 Zn(II) equivalent, pH 3.5.