ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Highly frustrated synthetic end member Mn₂(PO₄)OH in the triplite-triploidite family

Olga V. Yakubovich,^a Larisa V. Shvanskaya,^{a,b} Olga V. Dimitrova,^a Olga S. Volkova^{a,b,c} and Alexander N. Vasiliev^{a,b,d}

^aM. V. Lomonosov Moscow State University, Moscow 119991, Russia ^bNational University of Science and Technology "MISiS", Moscow 119049, Russia ^cUral Federal University, Ekaterinburg 620002, Russia ^dNational Research South Ural State University, Chelyabinsk 454080, Russia E-mail: <u>vasil@mig.phys.msu.ru</u>

Table S1 Synthetic photon	osphates and ars	senates with trip	oloidite- and t	triplite-type crysta	al structures*
---------------------------	------------------	-------------------	-----------------	----------------------	----------------

Chemical formula	<i>a,</i> Å	<i>b,</i> Å	<i>b,</i> Å <i>c,</i> Å		<i>V,</i> Å ³	Reference					
Triploidite structural group, space group $P2_1/a$											
Mn ₂ (PO ₄)OH, synth. triploidite	12.411(1)	13.323(1)	10.014(1)	108.16(1)	1573.3	This work					
Fe ₂ (PO ₄)OH, synth. wolfeite	12.265(1)	13.197(1)	9.739(1)	108.63(1)	1493.8	1					
Mg ₂ (PO ₄)F, synth. wagnerite	11.961(2)	12.731(3)	9.650(1)	108.22(1)	1395.8	2					
Mg ₂ (PO ₄)OH, synth. hydroxylwagnerite	12.069(4)	12.859(3)	9.656(3)	108.49(3)	1421.2	3					
Cd ₂ (PO ₄)OH	13.097(3)	14.089(3)	10.566(2)	108.38(3)	1850.2	4					
Zn ₂ (PO ₄)[F _{0.86} (OH) _{0.14}]	11.972(1)	12.793(1)	9.690(1)	108.26(1)	1409.3	5					
ZnFe(PO₄)OH	12.154(3)	13.149(6)	9.678(3)	109.00(2)	1462.4	6					
Co ₂ (PO ₄)F	11.955(4)	12.802(4)	9.712(2)	108.14(2)	1417.0	7					
Mn ₂ (AsO ₄)OH, synth. sarkinite	12.780(2)	13.613(2)	10.219(2)	108.83(1)	1682.5	8					
	Tripli	te structural grou	p, space group /2	/a							
$Mn_2(PO_4)F$, synth. triplite	12.099(4)	6.510(5)	10.094(2)	106.28(1)	763.2	9					
$Fe_2(PO_4)F$, synth. zwieselite	11.999(3)	6.489(1)	9.890(3)	107.72(2)	733.5	10					
Co ₂ (PO ₄)F	12.018(2)	6.437(1)	9.674(2)	109.17(2)	710.7	11					
Cu ₂ (PO ₄)F	11.741(3)	6.182(1)	9.962(2)	108.67(2)	685.1	12					
Cd ₂ (PO ₄)F	12.503(2)	6.693(1)	10.519(1)	106.42(1)	844.3	13					
Fe ₂ (AsO ₄)F	12.471(1)	6.623(1)	10.045(1)	108.90(1)	784.0	14					
Cd ₂ (AsO ₄)F	12.737(5)	6.847(1)	10.694(4)	106.00(6)	896.5	15					

*Originally reported unit-cells are transformed to P21/a and I2/a space-group settings for clear comparison

Table S2 Atomic coordinates and equivalent isotropic displacement parameters (Å²) for the Mn₂(PO₄)OH. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor

Aton	n x	у	Ζ.	U(eq)		
Mn1	0.53593(6)	0.17404(5)	0.89405(5)	0.00927(15)		
Mn2	0.45274(6)	0.32274(5)	1.07644(5)	0.00871(15)		
Mn3	-0.05631(6)	0.07540(5)	0.58293(5)	0.00852(15)		
Mn4	0.03498(6)	0.07151(5)	0.90274(5)	0.00874(15)		
Mn5	-0.20481(6)	0.25149(5)	0.80459(5)	0.01021(15)		
Mn6	0.19087(6)	0.26892(5)	0.68192(5)	0.00929(15)		
Mn7	-0.31283(6)	-0.02130(5)	0.68738(5)	0.00811(15)		
Mn8	0.29041(6)	-0.00337(5)	0.80284(5)	0.01058(15)		
P1	0.62138(10)	0.42769(8)	0.92499(8)	0.0062(2)		
P2	-0.12167(10)	0.17766(8)	1.07798(8)	0.0062(2)		
P3	0.11789(10)	0.32649(8)	0.92500(8)	0.0061(2)		
P4	0.38508(10)	0.07765(8)	1.07615(8)	0.0061(2)		
01	-0.0248(3)	0.0923(2)	1.0608(2)	0.0096(6)		
O2	0.0218(3)	0.2353(2)	0.8835(2)	0.0101(6)		
03	0.2614(3)	0.0469(2)	0.9731(2)	0.0114(6)		
O4	0.4701(3)	0.1626(2)	1.0434(2)	0.0103(6)		

0.6 0.5173(3) 0.0121(2) 0.8778(2)	0.8778(2) 0.0101	(6)
0.0173(3) $0.0121(2)$ $0.0770(2)$	0.0200(0) 0.0104	\~/
07 0.5192(3) 0.3420(2) 0.9302(2)	0.9302(2) 0.0104	(6)
08 -0.1877(3) 0.0826(2) 0.8017(2)	0.8017(2) 0.0119	(6)
09 0.0676(3) 0.0327(2) 0.7447(2)	0.7447(2) 0.0114	(6)
O10 0.3313(3) 0.3844(2) 0.6736(2)	0.6736(2) 0.0099	(6)
011 -0.2980(3) 0.4040(2) 0.8413(2)	0.8413(2) 0.0104	(6)
012 0.5724(3) 0.2190(2) 0.7401(2)	0.7401(2) 0.0100	(6)
013 -0.1896(3) 0.3497(2) 0.6698(2)	0.6698(2) 0.0089	(6)
014 0.4704(3) 0.4778(2) 1.1152(2)	1.1152(2) 0.0096	(6)
O15 -0.2743(3) 0.0545(2) 0.5442(2)	0.5442(2) 0.0112	(6)
O16 0.7629(3) 0.2029(2) 0.9670(2)	0.9670(2) 0.0090	(6)
O17 0.0329(3 0.0864(2) 0.4509(2)	0.4509(2) 0.0103	(6)
O18 -0.0255(3) 0.2298(2) 0.6195(2)	0.6195(2) 0.0090	(6)
O19 0.2356(2) 0.2980(2) 1.0344(2)	1.0344(2) 0.0109	(6)
O20 0.1807(3) 0.3591(2) 0.8314(2)	0.8314(2) 0.0101	(6)
H1 0.052(5) -0.0260(7) 0.734(4)	0.734(4) 0.034(1	15)
H2 0.285(3) 0.174(3) 0.848(2)	0.848(2) 0.020(1	13)
H3 0.560(5) 0.2782(6) 0.731(4)	0.731(4) 0.033(1	15)
H4 -0.212(3) 0.077(3) 0.857(2)	0.857(2) 0.025(1	4)

Table S3Bond valence data for synthetic triploidite, $Mn_2(PO_4)OH$

Atom	Mn1	Mn2	Mn3	Mn4	Mn5	Mn6	Mn7	Mn8	P1	P2	P3	P4	H1	H2	H3	H4	Σ
01				0.30						1.19						0.04	1.83
				0.30													
O2				0.34	0.35						1.25						1.94
03				0.34				0.24				1.26		0.07			1.91
04	0.37	0.34										1.22		0.05	0.09		2.07
O5(OH)	0.32					0.45		0.31						0.88			1.96
06	0.36							0.35				1.24					1.95
07	0.25	0.40							1.21								1.86
O8(OH)				0.33	0.28		0.44									0.87	1.92
O9(OH)			0.45	0.38				0.35					0.83				2.01
010						0.42	0.34					1.19			0.02		1.97
011					0.23			0.34	1.25						0.05		1.87
O12(OH)	0.39	0.45			0.36										0.84		2.04
013					0.36			0.27		1.23			0.09				1.95
014		0.41					0.37		1.21								1.99
015			0.43				0.35		1.23								2.01
016	0.33				0.30					1.22						0.09	1.94
017			0.43								1.26		0.08				2.08
			0.31														
018			0.42			0.40				1.20							2.02
019		0.43				0.33					1.23						1.99
O20						0.30	0.40				1.21						1.91
Σ	2.02	2.03	2.04	1.99	1.88	1.90	1.90	1.86	4.90	4.84	4.95	4.91	1.00	1.00	1.00	1.00	

Fig. S1 The Mn₂(PO₄)OH crystal structure in *yz* projection.

References

- 1 *F. Hatert, Acta Crystallogr.*, 2007, **C63**, i119–i121.
- 2 A. Amisano-Canesi and G. Chiari, Eur. Crystallogr. Meeting, 1992, 14, 189-189.
- 3 G. Raade and C. Rømming, Z. Kristallogr., 1986, 177, 1-13.
- 4 T. Đordević and U. Kolitsch, Miner. Petrol., 2013, 107, 243-251.
- 5 K. I. Taasti, A. N. Christensen, P. Norby, J. C. Hanson, B. Lebech, H. J.Jakobsen and J. Skibsted, J. Solid State Chem., 2002, 164, 42-50.
- 6 P. A. Sandomirskii, M. A. Simonov, N. V. Belov, Dokl. Akad. Nauk SSSR, 1975, 220, 89-92 (in Russian).
- 7 M. Leblanc, I. Collin-Fèvre and G. Férey, J. Magnetism and Magnetic Materials, 1997, 167, 71-79.
- 8 N. Stock, G. D. Stucky and A. K. Cheetham, Z. Anorg. Allg. Chem., 2002, 628, 357-362.
- 9 J. R. Rea and E. Kostiner, Acta Crystallogr., 1972, **B28**, 2525-2529.
- 10 O. V. Yakubovich, M. A. Simonov, E. N. Matvienko, N. V. Belov, Doklady Akademii Nauk SSSR, 1978, 238, 576-579 (in Russian).
- 11 H. Ben Yahia, M. Shikano and H. Kobayashi, Z. Kristallogr., 2014, 229, 775–781.
- 12 J. R. Rea and E. Kostiner, Acta Crystallogr., 1976, **B32**, 1944-1947.
- 13 J. R. Rea and E. Kostiner, Acta Crystallogr., 1974, B30, 2901-2903.
- 14 T. Berrocal, J. L. Mesa, J. L. Pizarro, M. K. Urtiaga, M. I. Arriortua and T. Rojo, J. Solid State Chem., 2006, 179, 1659– 1667.
- 15 G. Engel, J. Less. Comm. Met., 1989, 154, 367-374.