Electronic Supplementary Information

The roles of the phenol groups and auxiliary ligand of copper(II) complexes with tetradentate ligands in aerobic oxidation of benzyl alcohol

GuangliZhan,^a Wei Zhong,^b ZhenhongWei,^a ZhenzhenLiu^a and Xiaoming Liu*^b

^aSchool of Chemistry Nanchang University Nanchang, Jiangxi 330031 China

^bCollege of Biological, Chemical Sciences and Engineering Jiaxing University Jiaxing, Zhejiang 314001 China

Tel./Fax: +86(0)573 83643937 E-mail: <u>xiaoming.liu@mail.zjxu.edu.cn</u>

Table of Contents

I. Tables of crystallographic data and details of data collection and	structure
refinements	3
II. Catalytic mechanism of Galactose oxidase (GOase)	7
III. Internal standard method	7
IV. Crystal structure	8
V. UV–vis spectra of ligands and the copper complexes	8
VI. Molar extinction coefficients of ligands and complexes	9
VII. Redox behaviors of ligands and the copper complexes	9
VIII. The conductivity of the copper complexes	14
IX. Mechanistic investigation	14

Table S1 Crystallographic Details for complexes 1–6.								
Complexes	1	2	3	4	5	6		
Chemical formula	$C_{33}H_{44}Cl_2N_2O_6Cu$	$C_{27}H_{29}F_2N_2O_4Cu$	$C_{24}H_{20}F_6N_2O_4Cu$	C25H29N3O4Cu	C ₂₆ H ₃₀ ClF ₃ N ₂ O ₃ Cu	$C_{23}H_{21}ClF_6N_2O_3Cu$		
Formula weight	699.14	566.06	577.96	499.05	574.51	586.41		
Crystal size (mm)	0.38×0.31×0.19	0.53×0.34×0.19	0.47×0.29×0.15	0.33×0.26×0.12	0.45×0.27×0.20	0.36×0.29×0.11		
Temperature (K)	293(2)	293(2)	293(2)	293(2)	293(2)	293(2)		
Radiation	0.71073	1.54184	0.71073	1.54178	1.54184	1.54184		
Crystal system	triclinic	monoclinic	monoclinic	triclinic	Orthorhombic	Orthorhombic		
Space group	P-1	P21/n	P21/n	P-1	Pbca	Pbca		
a(Å)	8.8945(4)	11.8961(13)	20.8318(6)	9.9760(6)	21.3336(5)	20.7047(13)		
$b(\text{\AA})$	13.1461(11)	12.6494(11)	11.7725(3)	13.6021(10)	10.4005(3)	10.1712(6)		
$c(\text{\AA})$	15.0982(12)	17.4128(17)	21.1703(6)	18.6777(10)	23.4451(6)	23.1159(16)		
α(°)	86.414(7)	90	90	93.225(5)	90	90		
$eta(^\circ)$	84.212(5)	97.542(9)	111.074(3)	102.814(5)	90	90		
γ(°)	87.975(5)	90	90	94.021(5)	90	90		
V(Å ³)	1752.2(2)	2597.6(4)	4844.6(2)	2458.5(3)	5202.0(2)	4868.0(5)		

I. Tables of crystallographic data and details of data collection and structure refinements

Z	2	4	8	4	8	8
$\rho(_{calc}) (g/cm^3)$	1.325	1.447	1.585	1.348	1.467	1.600
F (000)	734	1172	2344	1044	2376	2376
Absorp.coeff. (mm ⁻¹)	0.819	1.690	0.982	1.541	2.587	2.964
θ range (deg)	2.74 to 26.00	4.25 to 71.99	2.92 to 26.50	3.27 to 72.31	3.77 to 72.28	3.82 to 72.29
Reflns collected	12776 (R _{int} =	9488 (R _{int} =	24174 ($R_{int} =$	16407 ($R_{int} =$	$12144 (R_{int} =$	$11232 (R_{int} =$
	0.0277)	0.0593)	0.0220)	0.0304)	0.0180)	0.0331)
Indep. reflns	6870	4976	10019	9331	5017	4704
Refns obs.	4986	2013	7161	6566	3714	2415
$[I \ge 2\sigma(I)]$						
Data/restr/paras	6870/1/410	4976 /0/342	10019/1/669	9331/0/603	5017/2/321	4704/0/326
GOF	1.036	0.993	1.065	1.046	1.045	1.051
$R_1/wR_2[I \ge 2\sigma(I)]$	0.0512/0.1132	0.0592 /0.1060	0.0398/0.1005	0.0710/0.2095	0.0578/0.1792	0.0696/0.2153
R_1/wR_2 (all data)	0.0803/0.1232	0.1607 /0.1541	0.0670/0.1104	0.1040/0.3003	0.0750/0.2003	0.1305/0.2866
Large peak and	0.491/-0.395	0.188 /-0.275	0.361/-0.303	1.718/-1.237	1.439/-0.575	0.690/-0.783
hole(e/Å ³)						

1 40	Table 52 Selected bond distances (X) and angles () for complexes T 0.									
Parameters	1	2	3	4	5	6				
Equatorial	N_2O_2	N_2O_2	N_2O_2	N_2O_2	N ₂ OCl	N ₂ OCl				
environment										
Axial atom	O _{acetate} , O _{phenol}	O _{phenol}	Ophenol	N _{pyridine}	Ophenol	O _{phenol}				
Cu1–O1	1.9287(19)	1.886(4)	1.8769(19)	1.936(4)	1.916(2)	1.887(4)				
Cu1–O2	2.637(2)	2.331(4)	2.2648(17)	1.946(4)	2.393(2)	2.445(5)				
Cu1–O3	1.9489(19)	1.952(4)	2.0035(17)							
Cu1–N1	2.033(2)	2.031(4)	2.0357(19)	2.075(4)	2.035(3)	2.044(5)				
Cu1–N2	1.995(2)	1.986(5)	1.975(2)	2.000(4)	2.014(3)	2.006(6)				
Cu1–N3				2.278(5)						
Cu1–Cl1					2.2654(10)	2.2740(18)				
O1–Cu1–O2		98.32(15)	106.05(8)	90.89(17)	94.34(9)	97.93(17)				
O1–Cu1–O3	89.08(8)	87.77(16)	85.49(8)							
O2–Cu1–O3		93.97(16)	91.32(7)							
O1–Cu1–N1	94.36(9)	94.82(18)	96.05(8)	93.08(18)	92.66(10)	92.86(17)				
O1–Cu1–N2	168.82(8)	165.86(17)	159.73(9)	164.80(18)	174.32(11)	173.0(2)				

Table S2 Selected bond distances (Å) and angles (°) for complexes 1–6.

O2–Cu1–N1		87.50(16)	91.04(7)	176.02(17)	87.42(9)	86.38(17)
O2–Cu1–N2		95.66(16)	94.18(7)	95.81(19)	88.76(9)	87.16(17)
O3–Cu1–N1	175.99(9)	176.82(17)	176.72(8)			
O3–Cu1–N2	94.00(9)	93.39(19)	92.99(8)			
N1–Cu1–N2	82.24(9)	83.7(2)	84.56(8)	80.26(19)	82.70(12)	82.7(2)
O1–Cu1–N3				96.01(17)		
O2–Cu1–N3				99.33(17)		
N1–Cu1–N3				80.59(18)		
N2-Cu1-N3				96.34(18)		
O1–Cu1–Cl1					89.62(8)	89.16(13)
O2–Cu1–Cl1					96.91(6)	96.52(12)
N1–Cu1–Cl1					174.94(8)	176.21(15)
N2-Cu1-Cl1					94.74(10)	95.01(18)

II. Catalytic mechanism of Galactose oxidase (GOase)

Scheme S1 Active site ofgalactose oxidase (GOase) and its consensus mechanism

$A_R = 0.01716 \text{ w} - 0.1751$ $R^2 = 0.9988$ $\mathbf{A}_{\mathbf{R}}$ 1 -W(mg)

III. Internal standard method

Fig. S1 The calibration curve of benzaldehyde using *o*-dichlorobenzene as internal standard

IV. Crystal structure

Fig. S2 Crystal structure of the product isolated from the reaction of ligand H_2L_1 with

 $CuCl_2 \cdot 2H_2O$

V. UV-vis spectra of ligands and the copper complexes

Fig. S3 UV–Vis absorption spectra of ligands $(10^{-4}mol L^{-1})$ in MeCN

VI. Molar extinction coefficients of ligands and complexes

	H_2L_1	H_2L_2	H ₂ L ₃	HL ₄
$\epsilon (\lambda \approx 210 \text{ nm})$	2 2 4 >< 1 0 4	1 72 \ / 104	1.55 \(1.04	1.04\/104
$(Lmol^{-1}cm^{-1})$	2.24×10^{4}	$1./3 \times 10^{4}$	1.55×10 ⁴	1.94×10 ⁴
ε (λ≈ 270 nm)	0.05\/104	0.50 \(1.04	0.601/104	0.02 \(1.04
$(Lmol^{-1}cm^{-1})$	0.85×10^{4}	0.52×10^{4}	0.62×10^{4}	0.83×10^{4}

Table S3 Molar extinction coefficients of ligands and complexes

	Complex 1	Complex 2	Complex 3	Complex 4	Complex 5	Complex 6
ϵ ($\lambda \approx 250$ nm) (Lmol ⁻¹ cm ⁻¹)	1.24×10 ⁴	1.10×10 ⁴	1.25×10 ⁴	1.70×10 ⁴	0.64×10 ⁴	1.14×10 ⁴
ϵ ($\lambda \approx 300$ nm) (Lmol ⁻¹ cm ⁻¹)	0.86×10 ⁴	0.85×10 ⁴	1.06×10 ⁴	0.65×10 ⁴	0.45×10 ⁴	1.09×10 ⁴
ϵ ($\lambda \approx 480$ nm) (Lmol ⁻¹ cm ⁻¹)	0.13×10 ⁴	0.13×10 ⁴	0.12×10 ⁴	0.12×10 ⁴	0.09×10 ⁴	0.08×10 ⁴
$ \begin{array}{c} \epsilon (\lambda \approx \ 480 \ nm) \\ (Lmol^{-1}cm^{-1}) \end{array} $	0.27×10^{3}	0.20×10 ³	0.10×10 ³	0.19×10 ³	0.14×10 ³	0.16×10 ³

VII. Redox behaviors of ligands and complexes

Fig. S4 Cyclic voltammograms of ligands (5.6 mmol L^{-1}) and complexes (2.8 mmol L^{-1}) in 0.1 mol L^{-1} [*N*ⁿBu₄]BF₄–CH₃CN under N₂ atmosphere (298 K, scanning rate = 100 mV s⁻¹).

VIII. The conductivity of the copper complexes

Table S4 The conductivity of the copper complexes in MeCN at room temperature

Complexes	1	2	3	4	5	6
Conductivity (µs/cm)	1.93	0.60	0.40	2.19	27.90	17.74

IX. Mechanistic investigation

1. Redox behaviors

Fig. S5 Cyclic voltammograms in 0.5 mol L^{-1} [*N*^{*n*}Bu₄]BF₄-CH₂Cl₂ (298 K, scanning rate = 100 mV s⁻¹, complexes 1 2.8 mmol L^{-1} , TEMPO 2.8 mmol L^{-1} , Benzyl alcohol

 $2.8 \text{ mmol } L^{-1}$).

Fig. S6 EPR spectra recorded in CH₃CN at 90K by using complex 1 to probe the catalytic mechanism.