SUPPORTING INFORMATION

Recognition of Phosphopeptides by a Dinuclear Copper(II) Macrocyclic Complex in Water:Methanol 50:50 v/v Solution

Lígia M. Mesquita,^a Pedro Mateus,^a Rui D. V. Fernandes,^a Olga Iranzo,^b Vânia André,^c Filipe Tiago de Oliveira,^d Carlos Platas-Iglesias,^e Rita Delgado^{*,a}

^{*a*} Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780–157 Oeiras, Portugal.

^b Aix Marseille Univ., CNRS, Centrale Marseille, iSm2, Marseille, France

^c Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049–001 Lisboa, Portugal.

^{*d*} Laboratório de Instrumentação, Engenharia Biomédica e Física da Radiação (LIBPhys-UNL), Departamento de Física, Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa, Monte de Caparica, 2892-516 Caparica, Portugal.

^e Centro de Investigaciones Científicas Avanzadas (CICA) and Departamento de Química Fundamental, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira-Rúa da Fraga 10, 15008 A Coruña, Spain.

Contents: Figures and Tables not shown in the main text

Table S1	Overall protonation constants of L and overall stability constants of its copper(II) complexes	S3
Table S7	Overall and stepwise protonation constants of the studied substrates	\$3
Table S2	Overall stability constants of the conner(II) complexes of the studied substrates	53
Table S4	Overall association constants between the conner(II) complexes of I with the anions	S4
Table S5	Hydrogen bond details for the main interactions in [Cu.] (u. PhPO.)][Cu.] (u.	54
Table 55	PhPO ₄)(NO ₃)] $3NO_3 \cdot 24H_2O$	54
Table S6	Exchange coupling constants J_{iso} ($H = J_{iso} \mathbf{S}_1 \cdot \mathbf{S}_2$) calculated by DFT using different functionals and basis sets for the cryptate reported in reference 24b.	S5
Table S7	Experimental (X-ray) and calculated (DFT) Bond Distances (Å) and Angles (°) of the	S6
	Coordination Spheres of the $[Cu_2L(\mu-PhPO_4)]^{2+}$ (A) and $[Cu_2L(\mu-PhPO_4)(NO_3)]^+$ (B)	
Fig S1	Cation Complexes.	\$7
Fig. S1 Fig. S2	Species distribution diagram of the protonation of H pST3	S7
Fig. 52 Fig. S3	Species distribution diagram calculated for the complexes of Cu^{2+} with L in presence of	S7 87
Fig. 55	$PhPO_4^{2-}$ anion	57
Fig. S4	Thermal ellipsoid plot (at 50% probability) for the asymmetric unit, depicting all the	S 8
	water molecules and anions	
Fig. S5	X-band EPR spectra of copper complexes (Cu ²⁺ :L 2:1) from pH 4.5 to 8.8	S 8
Fig. S6	ESI mass spectrum of H ₂ pST3	S9
Fig. S7	¹ H NMR spectrum of H_2 pST3 in D_2 O	S9
Fig. S8	APT NMR spectrum of H_2 pST3 in D_2 O	S10
Fig. S9	¹ H NMR spectrum of H_3pST1 in D_2O	S10
Fig. S10	13 C NMR spectrum of H ₃ pST1 in D ₂ O	S11
Fig. S11	COSY spectrum of H ₃ pST1 in D ₂ O	S11
Fig. S12	HMQC spectrum of H_3pST1 in D_2O	S12
Fig. S13	ESI mass spectrum of H ₃ pST1 in H ₂ O/MeOH	S12
Fig. S14	¹ H NMR spectrum of 2,4-bis(bromomethyl)-1,3,5-triethylbenzene in CDCl ₃	S13
Fig. S15	¹ H NMR spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl ₃	S13
Fig. S16	¹³ C NMR spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl ₃	S14
Fig. S17	COSY spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in $CDCl_3$	S14
Fig. S18	NOESY spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl ₃	S15
Fig. S19	HMQC spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl ₃	S16
Fig. S20	HMBC spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl ₃	S16
Fig. S21	H NMR spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl ₃ .	SI7
Fig. S22	²³ C NMR spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl ₃	SI7
Fig. S23	COSY spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl ₃	518
Fig. 824	NOESY spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl ₃	518
Fig. S25	HMQC spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in $CDCl_3$	S19
Fig. 826	HMBC spectrum of 2,4-bis(aminomethyl)-1,3,3-triethylbenzene in $CDCl_3$	519
Fig. 527	H NMR spectrum of L(imine) in CDCl ₃ . ¹ U NMR supertrum of L in CDCl	520 520
Fig. 528	H NMR spectrum of L in CDCl ₃ . 13 C NMR spectrum of L in CDCl	S20
Fig. 529	COSV spectrum of L in CDCl ₃	S21
Fig. 530	NOESY spectrum of L in CDC1	521
Fig. 531	HMOC spectrum of L in CDC1	522
Fig. 532	HMRC spectrum of L in CDCl ₃	S22 S23
Fig. 555	FSI mass spectrum of L in H.O/MeOH	\$23
Fig. 534	EST mass spectrum of the diconner(II) complex of L at $nH = 6.5$ in $H_{\cdot}O/MeOH$	\$23
Fig. 535	ESI mass spectrum of $[C_{11}]$ (u-PhPO ₄) $[C_{12}]$ (u-PhPO ₄) $[NO_4)$ $[3NO_4)$ $(24H_2O_4)$ MaOH	S24
Fig. 530	UV_{vis} spectra of the diconner complex of L at pH 7.0 and of this complex in presence	S25
112.007	of PhPO ₄ ^{2–} at pH 5.8	525
Table S8	Coordinates of the cryptate reported by Nelson (reference 24 in the main text) optimized	S26
	at the B3LYP/6-311G(d) level.	
Table S9	Coordinates of $[Cu_2L(\mu-OH)]^{3^+}$ optimized at the B3LYP/6-311G(d) level.	S28
Table S10	Coordinates of $[Cu_2L(\mu - PhPO_4)]^{2+}$ optimized at the B3LYP/6-311G(d) level.	S30
Table S11	Coordinates of $[Cu_2L(\mu - PhPO_4)(NO_3)]^{\dagger}$ optimized at the B3LYP/6-311G(d) level.	S33

Page

Table S1 Overall protonation constants (β_i^H) of L and overall stability constants ($\beta_{Cu_mH_hL_l}$) of its copper(II) complexes in water/methanol (50:50 v/v) solution.^{*a*}

Equilibrium reaction	$\log eta_{\mathrm{i}}^{\mathrm{H}b}$	Equilibrium reaction	$\log \beta_{\mathrm{Cu_mH_hL_l}^c}$
$\Gamma + H_{+} \rightleftharpoons H\Gamma_{+}$	8.36(1)	$\operatorname{Cu}^{2+} + 2 \operatorname{H}^{+} + L \rightleftharpoons [\operatorname{Cu}H_2L]^{4+}$	24.19(1)
$L + 2 H^+ \Rightarrow H_2 L^{2+}$	15.88(1)	$Cu^{2+} + H^+ + L \Rightarrow [CuHL]^{3+}$	18.34(2)
$L + 3 H^+ \Rightarrow H_3 L^{3+}$	22.39(1)	$Cu^{2+} + L \rightleftharpoons [CuL]^{2+}$	11.24(3)
$L + 4 H^+ \Rightarrow H_4 L^{4+}$	28.18(1)	$Cu^{2+} + L \rightleftharpoons [CuL(OH)]^+ + H^+$	2.86(2)
		$2 \operatorname{Cu}^{2+} + L \rightleftharpoons [\operatorname{Cu}_2 L]^{4+}$	18.30(1)
		$2 \operatorname{Cu}^{2+} + L \rightleftharpoons \left[\operatorname{Cu}_2 L(\operatorname{OH})\right]^{3+} + \operatorname{H}^+$	13.87(1)

^a T = 298.2±0.1 K; I = 0.10±0.01 M in KNO₃. ^b Values in parenthesis are standard deviations in the last significant figures.

Table S2 Overall (β_i^{H}) and stepwise (K_i^{H}) protonation constants of the studied substrates in water/methanol (50:50 v/v) solution.^{*a*}

Fauilibrium		log	β_{i}^{Hc}		Fauilibrium		log	K_{i}^{H}	
reaction ^b	PO4 ³⁻	PhPO ₄ ²⁻	pST3 ²⁻	pST1 ³⁻	reaction ^b	PO4 ³⁻	PhPO ₄ ²⁻	pST3 ²⁻	pST1 ³⁻
$S + H^+ \rightleftharpoons HS$	11.91(1)	6.81(3)	10.69(1)	10.81(1)	$S + H^+ \rightleftharpoons HS$	11.91	6.81	10.69	10.81
$S + 2 H^+ \rightleftharpoons H_2 S$	19.42(1)	-	20.45(1)	17.35(3)	$\mathrm{HS} + \mathrm{H}^+ \rightleftharpoons \mathrm{H}_2\mathrm{S}$	7.51	_	9.76	6.54
$S + 2 H^+ \rightleftharpoons H_3S$	22.23(1)	-	26.64(1)	22.36(3)	$H_2S + H^+ \rightleftharpoons H_3S$	2.81	_	6.19	5.01

^{*a*} $T = 298.2 \pm 0.1$ K; $I = 0.10 \pm 0.01$ M in KNO₃. The value for acetate was also determined in the same conditions: log $K_1^{\text{H}} = 5.24(1)$. ^{*b*} S denotes the substrate; charges of the substrates were omitted for simplicity. ^{*c*} Values in parenthesis are standard deviations in the last significant figures.

Table S3 Overall (log $\beta_{CuH_hS_s}$) stability constants of the copper(II) complexes of the studied substrates in water/methanol (50:50 v/v) solution.^{*a*}

Equilibrium reaction ^{b,c}			$\log \beta_{\mathrm{CuH}_{\mathrm{h}}\mathrm{S}_{\mathrm{s}}}{}^{d}$	
Equinorium reaction	PO_4^{3-}	PhPO ₄ ^{2–}	pST3 ²⁻	pST1 ³⁻
$Cu^{2+} + 2 H^+ + S \rightleftharpoons [CuH_2S]$	_	_	23.89(5)	20.63(4)
$Cu^{2+} + H^+ + S \rightleftharpoons [CuHS]$	16.76(2)	-	17.38(6)	16.04(1)
$Cu^{2+} + S \rightleftharpoons [CuS]$	_	4.12(5)	11.11(3)	_

 a T = 298.2±0.1 K; I = 0.10±0.01 M in KNO₃. b S denotes the substrate. c Charges of the substrates and complexes were omitted for simplicity. d Values in parenthesis are standard deviations in the last significant figures.

Γ ===:1:1		$\log eta_{\mathrm{Cu_m}\mathrm{H_hL_lS_s}}{}^d$				
Equilibrium reaction	PO ₄ ³⁻	PhPO ₄ ²⁻	pST3 ²⁻	pST1 ³⁻		
$2 \operatorname{Cu}^{2+} + L + S \rightleftharpoons [\operatorname{Cu}_2 L(S)]$	_	25.84(1)	_	_		
$2 \operatorname{Cu}^{2+} + \operatorname{H}^{+} + L + S \rightleftharpoons [\operatorname{Cu}_2 \operatorname{HL}(S)]$	37.80(2)	_	_	36.57(1)		
$2 \operatorname{Cu}^{2+} + 2 \operatorname{H}^{+} + L + S \rightleftharpoons [\operatorname{Cu}_2\operatorname{H}_2\operatorname{L}(S)]$	41.80(3)	_	45.38(1)	41.28(1)		
$2 \operatorname{Cu}^{2+} + 3 \operatorname{H}^+ + L + S \rightleftharpoons [\operatorname{Cu}_2\operatorname{H}_3\operatorname{L}(S)]$	_	_	48.89(7)	45.27(3)		

Table S4 Overall ($\beta_{Cu_mH_hL_lS_s}$) association constants between the copper(II) complexes of L with the anions in water/methanol (50:50 v/v).^{*a*}

 $^{a}T = (298.2\pm0.1)$ K; $I = (0.10\pm0.01)$ M in KNO₃. b Charges of the complex species were omitted for simplicity. c S denotes the substrate. d Values in parenthesis are standard deviations in the last significant figures.

		1/11 ()		
Sym. Op.	$D–H\cdots A$	$d(H \cdots A)$	d(D - A)	(DHA)
X, Y, Z	015W…04A	<u>n/a</u>	2.782(9)	('')
x, y, z	O16W…O4A	n/a	2.649(8)	n/a
-1+x, -1+y, z	O11W···O4B	n/a	2.574(8)	n/a
-1+x, -1+y, z	O17W···O4B	n/a	2.622(8)	n/a
x, y, z	N1A–H···O16W	1.95	2.916(8)	160
-1+x, y, z	N10A–H···O9W	2.16	2.857(10)	125
-1+x, -1+y, z	N1B–H···O11W	2.02	2.932(8)	151
x, y, z	N19B–H···O2C	2.14	2.912(10)	133
x, y, z	N19B–H···O2D	2.29	3.080(10)	135
x, y, z	N19A–H···O3C	2.28	3.059(10)	134
x, y, z	N19A–H···O3D	2.08	2.929(10)	142
x, -1+y, z	N10B–H…O6	2.17	2.963(10)	134
-1+x, -1+y, z	N28B–H···O17W	2.07	2.994(8)	153
x, y, z	N28A–H····O4A	2.43	3.244(8)	138
x, y, z	N28A–H···O15W	2.46	3.317(10)	144

Table S5 Hydrogen bond details for the main interactions in $[Cu_2L(\mu-PhPO_4)][Cu_2L(\mu-PhPO_4)][Cu_2L(\mu-PhPO_4)][NO_3)]3NO_3 \cdot 24H_2O$.

Table S6 Exchange coupling constants J_{iso} ($H = J_{iso} S_1 \cdot S_2$) calculated by DFT using different functionals and basis sets for the cryptate reported in reference 24b.

	$J_{iso} (\mathrm{cm}^{-1})$	Cu-Cu (Å)	Cu-O-Cu (°)
M06/TZVP	1190	3.895	165.4
B3LYP/TZVP	1104	3.895	165.4
$B3LYP/6-311G(d)^a$	1094	3.895	165.4
$B3LYP/6-311G(d)^{b}$	898	3.929	164.9
Exp.	865 <u>+</u> 50	3.900	174.0

^{*a*} Structures optimized at the M06/TZVP level. ^{*b*} Structures optimized at the B3LYP/6-311G(d) level.

		[Cu ₂ L(µ-Ph	$PO_4)]^{2+}$	[Cu ₂ L(µ	a-PhPO ₄)(NO ₃)] ⁺
	X-ray	M06/TZVP ^a	B3LYP/6-311G(d) ^b	X-ray	B3LYP/6-311G(d) ^b
Distances / Å					
N1–Cu1	2.068(6)	2.071	2.082	2.072(7)	2.075
N10-Cu1	2.092(8)	2.093	2.106	2.077(5)	2.109
N8–Cu1	1.925(6)	1.927	1.929	1.921(6)	1.937
O1–Cu1	1.872(4)	1.864	1.855	1.875(6)	1.833
O1C–Cu2	_			2.393(8)	2.264
N19-Cu2	2.083(6)	2.089	2.102	2.084(6)	2.119
N26–Cu2	1.929(6)	1.931	1.925	1.924(6)	1.946
N28–Cu2	2.073(6)	2.076	2.079	2.063(6)	2.134
O3–Cu2	1.862(6)	1.881	1.847	1.859(6)	1.864
Cu1…Cu2	5.812(1)	4.480	5.556	5.811(1)	5.664
Angles / °					
N1-Cu1-N10	164.4(2)	163.6	162.3	162.3(2)	162.5
N8–Cu1–O1	171.5(2)	172.7	155.5	164.6(3)	155.2
O1C-Cu2-N19	_			94.1(3)	100.2
O1C-Cu2-N28	_			90.1(3)	85.0
O1C-Cu2-N26	_			86.2(3)	84.1
O1C-Cu2-O3	_			100.9(3)	99.1
N19-Cu2-N28	160.9(2)	161.2	164.7	162.1(2)	161.6
N26-Cu2-O3	173.5(2)	150.8	173.2	173.6(3)	176.8

Table S7 Experimental (X-ray) and calculated (DFT) bond distances (Å) and angles (°) of the coordination spheres of the $[Cu_2L(\mu-PhPO_4)]^{2+}$ and $[Cu_2L(\mu-PhPO_4)(NO_3)]^+$ cation complexes.

^{*a*} Bulk solvent effects (water) included using polarized continuum model. ^{*b*} Optimizations in the gas phase.

Fig. S1 Species distribution diagram of the protonation of L. $C_L = 1.0 \times 10^{-3}$ M.

Fig. S2 Species distribution diagram of the protonation of H_2pST3 . $C_{peptide} = 1.0 \times 10^{-3}$ M.

Fig. S3 Species distribution diagram calculated for the complexes of Cu^{2+} with L in presence of the PhPO₄²⁻ anion (A = PhPO₄²⁻). $C_{Cu} = 2 \times C_L = 2 \times C_A = 2.0 \times 10^{-3}$ M.

Fig. S4 Thermal ellipsoid plot (ellipsoids set at 50% probability) for the $[Cu_2L(\mu-PhPO_4)][Cu_2L(\mu-PhPO_4)(NO_3)]3NO_3 \cdot 24H_2O$ asymmetric unit, depicting all the water molecules and anions. Hydrogen atoms were omitted for clarity.

Fig. S5 X-band EPR spectra of copper(II) complexes (Cu^{2+} :L 2:1) at three different pH values. All spectra recorded at 135 K, 2.0 mW microwave power, 1.0 mT modulation amplitude, and frequency (v) of 9.5 GHz. All samples in H₂O:MeOH (50:50 v/v) solution.

Fig. S6 ESI mass spectrum of H_2pST3 , recorded in positive ion mode.

Fig. S7 ¹H NMR spectrum of H_2pST3 in D_2O .

Fig. S9 1 H NMR spectrum of H₃pST1 in D₂O.

Fig. S12 HMQC spectrum of H_3pST1 in D_2O .

Fig. S13 ESI mass spectrum of H_3pST1 in $H_2O/MeOH$, recorded in positive ion mode.

Fig. S15 ¹H NMR spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S16¹³C NMR spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S17 COSY spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S18 NOESY spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S19 HMQC spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S20 HMBC spectrum of 2,4-bis(azidomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S21 ¹H NMR spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S22 ¹³C NMR spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S23 COSY spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S24 NOESY spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S25 HMQC spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S26 HMBC spectrum of 2,4-bis(aminomethyl)-1,3,5-triethylbenzene in CDCl₃.

Fig. S27 ¹H NMR spectrum of L(imine) in CDCl₃.

Fig. S28 ¹H NMR spectrum of L in CDCl₃.

Fig. S30 COSY spectrum of L in CDCl₃.

Fig. S33 HMBC spectrum of L in CDCl₃

Fig. S34 ESI mass spectrum of L in $H_2O/MeOH$, recorded in positive ion mode.

Fig. S35 ESI mass spectrum of a solution of the dicopper(II) complex of L at pH = 6.5 in H₂O/MeOH, and the zoom range of the isotopic series of peaks m/z 385 and 913, recorded in positive ion mode.

Fig. S36 ESI mass spectrum of crystals of $[Cu_2L(\mu-PhPO_4)][Cu_2L(\mu-PhPO_4)(NO_3)]3NO_3 \cdot 24H_2O$ dissolved in MeOH, and the zoom range of the isotopic series of peaks *m/z* 385 and 472, recorded in positive ion mode.

Fig. S37 UV-vis spectra of the dicopper complex of L at pH 7.0 (left), and of this complex in presence of $PhPO_4^{2-}$ at pH 5.8 and Cu^{2+} :L:HPhPO₄⁻ 2:1:1 ratio (right).

A 4		Coordinates in A	Å
Atom	Х	Y	Z
Cu	4.939706	13.934508	3.780555
Cu	4.498767	13.819864	7.671916
0	4.569814	14.081113	5.714299
Ν	5.132066	13.954538	1.691375
N	4.321994	13.866320	9.759705
С	5.957259	12.768759	1.302519
С	6.984989	12.467632	2.381355
Ν	6.300893	12.296823	3.695599
С	5.785769	10.896509	3.855789
С	5.200128	10.632828	5.191510
С	5.575108	9.825137	6.222446
С	4.575091	9.976303	7.235920
С	3.669467	10.876595	6.760126
0	4.024485	11.263224	5.496282
С	2.426132	11.454452	7.328538
N	2.543905	12.908210	7.732571
С	2.037584	13.159658	9.110977
С	3.171566	12.976317	10.109272
С	5.814257	15.225622	1.293254
С	5.315249	16.393136	2.131314
N	5.544378	16.102306	3.572548
С	6.907443	16.563714	4.033518
С	7.645812	15.562477	4.842742
С	8.754157	14.808710	4.597980
С	8.974789	14.012605	5.767376
С	7.990640	14.345156	6.648592
0	7.185383	15.309843	6.105995
С	7.668255	13.875157	8.015959
N	6.436708	13.017376	8.064337
С	6.267303	12.378247	9.401887
С	5.596776	13.353402	10.354609
С	3.769414	13.876398	1.069197
С	2.800162	13.146949	1.986036
Ν	2.779288	13.799706	3.323569
С	1.840558	14.968250	3.368545
С	1.558268	15.434374	4.750521
С	0.451265	15.388722	5.535984
С	0.808138	15.977839	6.795933
С	2.112383	16.347296	6.705669
0	2.586294	16.045886	5.445207
С	3.071885	16.973228	7.655679
Ν	4.287143	16.130743	7.930746

 Table S8 Coordinates of the cryptate reported by Nelson (reference 24 in the main text) optimized at the B3LYP/6-311G(d) level.

С	4.762757	16.284167	9.331197
С	4.062215	15.269081	10.222431
Н	6.442258	12.940981	0.336920
Н	5.289015	11.917465	1.166520
Н	7.690291	13.291772	2.487841
Н	7.565743	11.579415	2.113614
Н	6.995831	12.448873	4.424292
Н	6.600008	10.185182	3.688066
Н	5.041989	10.716423	3.076654
Н	6.432220	9.168027	6.247092
Н	4.521906	9.443966	8.174588
Н	2.152492	10.866972	8.205296
Н	1.598222	11.356068	6.621557
Н	1.969879	13.449287	7.093332
Н	1.202561	12.499556	9.362851
Н	1.648847	14.178044	9.141409
Н	2.833580	13.173412	11.131627
Н	3.523583	11.943268	10.084160
Н	5.664648	15.414035	0.225373
Н	6.887520	15.097501	1.443689
Н	4.246184	16.552719	1.981195
Н	5.809041	17.317351	1.816168
Н	4.856536	16.626890	4.102584
Н	6.796226	17.500556	4.587000
Н	7.514509	16.798596	3.158818
Н	9.374797	14.844050	3.714379
Н	9.784648	13.318320	5.938476
Н	7.525386	14.723225	8.687867
Н	8.522410	13.307153	8.396797
Н	6.574437	12.268369	7.388144
Н	7.226142	12.045654	9.811980
Н	5.652379	11.489476	9.259371
Н	5.403367	12.884763	11.323821
Н	6.251930	14.203189	10.547270
Н	3.828929	13.385591	0.093712
Н	3.414533	14.889117	0.879519
Н	3.111876	12.109951	2.131396
Н	1.804757	13.116055	1.530227
Н	2.437046	13.118259	3.995316
Н	0.885837	14.698871	2.905459
Н	2.262148	15.778790	2.770554
Н	-0.518963	15.005902	5.254459
Н	0.153680	16.132269	7.641510
Н	2.538361	17.143521	8.591048
Н	3.384800	17.961033	7.300011
Н	5.030766	16.458080	7.322203

Н	4.595103	17.295343	9.716225
Н	5.843379	16.127838	9.340273
Н	4.374364	15.379879	11.265165
Н	2.986757	15.445849	10.202402
Н	4.026592	14.877564	5.670831

Table S9 Coordinates of $[Cu_2L(\mu-OH)]^{3+}$ optimized at the B3LYP/6-311G(d) level.

	(Coordinates in A	Â.
Atom	Х	Y	Ζ
Cu	4.884960	11.797291	4.633006
Cu	5.625583	8.133086	6.038966
Ν	4.336591	13.720156	4.582079
Ν	5.795369	6.609612	7.322213
Ν	6.147868	12.653469	6.049971
С	7.458768	13.070328	5.403897
С	8.189493	11.798760	5.052652
С	8.342701	11.356907	3.726254
С	8.748001	10.036314	3.520223
С	8.820629	9.103853	4.557922
С	8.659710	9.571003	5.874603
С	8.383973	8.647031	7.034062
N	6.945510	8.899938	7.454359
Ν	4.634366	6.533597	4.936994
С	4.545994	6.341518	3.434971
С	3.603701	7.333558	2.818617
С	4.103637	8.577179	2.376100
С	3.199780	9.564070	1.949835
С	3.693075	10.949020	1.645039
Ν	3.599205	11.830102	2.875352
С	3.496912	13.247189	2.406573
С	3.630310	14.204334	3.549446
С	4.624397	14.494921	5.643975
С	5.424028	13.780846	6.697782
С	4.185631	15.808029	5.714509
С	3.426541	16.313961	4.659214
С	3.145489	15.505931	3.559362
С	1.814323	9.291396	1.854055
С	1.372850	8.027427	2.224910
С	2.226957	7.044672	2.732384
С	1.594980	5.728385	3.149455
С	0.834363	10.326985	1.313504
С	-0.636626	9.913116	1.238681
С	5.606510	8.799367	2.242259
С	6.127474	8.354572	0.865118

С	5.070704	5.228191	5.523290
С	5.418209	5.371098	6.971888
С	6.226000	6.870950	8.570423
С	6.277988	5.877288	9.535329
С	5.863507	4.590962	9.189478
С	5.429504	4.330097	7.891743
С	6.601215	8.311742	8.776959
0	5.012736	9.821469	5.087848
С	8.509441	10.947483	6.125842
С	8.776356	11.520725	7.520258
С	10.256077	11.942996	7.647229
С	9.121440	7.653757	4.229755
С	10.571434	7.246222	4.545459
С	8.140163	12.266699	2.529321
С	9.275390	13.288223	2.339950
С	1.006398	5.737894	4.571799
Н	6.379772	11.974579	6.764593
Н	8.004104	13.708531	6.103098
Н	7.224887	13.679303	4.534427
Н	8.935312	9.701299	2.504830
Н	9.034059	8.818046	7.895343
Н	8.477368	7.596666	6.770562
Н	6.835048	9.904573	7.516058
Н	3.671652	6.678080	5.244155
Н	4.200270	5.322830	3.256881
Н	5.555888	6.396035	3.037631
Н	4.721157	10.981554	1.295212
Н	3.084777	11.408265	0.864525
Н	2.699692	11.603220	3.300887
Н	2.563283	13.402241	1.859639
Н	4.312483	13.418818	1.697064
Н	6.114765	14.458362	7.207352
Н	4.751258	13.368064	7.456443
Н	4.428080	16.425248	6.571774
Н	3.063786	17.335186	4.690984
Н	2.569032	15.884591	2.723421
Н	0.322502	7.784182	2.123236
Н	0.785582	5.508886	2.448818
Н	2.291709	4.894112	3.042799
Н	0.899260	11.244135	1.915885
Н	1.160140	10.618904	0.307826
Н	-1.229376	10.735085	0.834579
Н	-0.786469	9.057829	0.576708
Н	-1.050206	9.666374	2.219433
Н	6.149376	8.277199	3.030011
Н	5.862634	9.844167	2.415985

Н	7.204014	8.519159	0.779130
Н	5.937496	7.293936	0.685634
Н	5.640975	8.903219	0.055515
Н	4.302061	4.465996	5.370473
Н	5.957162	4.899132	4.971984
Н	6.632859	6.097989	10.535302
Н	5.886474	3.795596	9.925921
Н	5.114659	3.335103	7.599548
Н	7.426213	8.415894	9.487116
Н	5.746698	8.860547	9.185859
Н	8.563026	10.804695	8.316121
Н	8.156611	12.390945	7.748775
Н	10.451944	12.346469	8.642565
Н	10.923562	11.094314	7.487111
Н	10.515172	12.708210	6.913153
Н	8.433265	6.983018	4.761205
Н	8.929914	7.487365	3.166765
Н	10.752399	6.209491	4.255546
Н	11.279072	7.872513	3.998949
Н	10.802938	7.342005	5.609537
Н	8.062609	11.651812	1.629013
Н	7.182417	12.799388	2.605721
Н	9.103617	13.896132	1.449706
Н	9.366994	13.963133	3.194958
Н	10.235476	12.783469	2.217407
Н	0.517092	4.787445	4.792088
Н	1.770430	5.892994	5.344827
Н	0.262229	6.527977	4.691781
Н	4.467049	9.440703	4.384015

Table S10 Coordinates of $[Cu_2L(\mu-PhPO_4)]^{2+}$ optimized at the B3LYP/6-311G(d) level.

Atom	Coordinates in Å			
	Х	Y	Z	
Cu	4.657021	12.364886	4.163655	
Cu	5.447787	7.218856	6.102633	
Р	4.176726	10.029577	5.969032	
0	4.116731	8.487547	5.861249	
N	4.348720	14.222197	3.761165	
N	6.214433	5.622553	6.868605	
N	5.682267	13.167767	5.783968	
С	7.180365	13.210601	5.638294	
С	7.746124	11.831255	5.377661	
С	8.109788	11.453127	4.072337	
С	8.498621	10.135252	3.846897	

C	8.460962	9.161745	4.842483
С	8.110116	9.549706	6.149150
С	8.015745	8.513266	7.247105
N	6.598746	8.126633	7.581457
N	4.740999	5.845096	4.671592
С	4.573504	6.172664	3.206083
С	3.622822	7.314837	2.896329
С	4.113794	8.556596	2.432873
С	3.213088	9.580214	2.068492
С	3.717778	10.899991	1.510174
N	3.520890	12.092497	2.415663
С	3.587489	13.372320	1.651250
С	3.794688	14.548452	2.584437
С	4.609638	15.123550	4.720811
С	5.099793	14.514616	6.023666
С	4.347926	16.468726	4.493866
С	3.787187	16.838545	3.270821
С	3.492496	15.874868	2.304994
С	1.820125	9.358568	2.148545
С	1.372486	8.125662	2.611282
С	2.236745	7.100992	2.991910
С	1.611671	5.815090	3.502152
С	0.808803	10.426356	1.747651
С	-0.603493	9.939292	1.405525
С	5.609985	8.769639	2.294975
С	6.167358	8.362566	0.920856
С	5.508410	4.571884	4.835157
С	6.079158	4.451937	6.232990
С	6.677113	5.726817	8.124645
С	7.101341	4.590230	8.799401
С	6.998170	3.358164	8.150231
С	6.470429	3.275620	6.860914
С	6.574216	7.134077	8.688780
С	0.405740	9.933977	6.464949
С	1.658296	10.366230	6.890852
С	1.897887	10.652444	8.233165
С	0.862731	10.491646	9.153622
С	-0.396412	10.061517	8.741002
С	-0.621648	9.784754	7.393543
0	4.750991	10.582603	4.637715
0	4.871961	10.554124	7.208587
С	7.826961	10.902000	6.435183
С	7.715029	11.374004	7.877536
С	9.082548	11.808399	8.437396
С	8.850054	7.742337	4.469014
С	10.325651	7.411978	4.752724

C	8.147989	12.420348	2.902397
С	9.423427	13.279875	2.862655
0	2.626844	10.569046	5.904103
С	1.083212	5.921709	4.945377
Н	5.447420	12.523629	6.547299
Н	7.599654	13.660485	6.542146
Н	7.402250	13.895976	4.822810
Н	8.806220	9.846248	2.845948
Н	8.491186	8.867342	8.165871
Н	8.534938	7.597840	6.970969
Н	6.064602	8.971118	7.821670
Н	3.804036	5.691952	5.041073
Н	4.225062	5.263491	2.705145
Н	5.570988	6.363588	2.821677
Н	4.777142	10.864586	1.274731
Н	3.201851	11.115549	0.568199
Н	2.584202	12.012046	2.807114
Н	2.698311	13.515614	1.029941
Н	4.442324	13.305276	0.970875
Н	5.811044	15.176881	6.525477
Н	4.240803	14.402231	6.692676
Н	4.561403	17.210970	5.254083
Н	3.568057	17.881904	3.073347
Н	3.039570	16.154683	1.361134
Н	0.306905	7.934540	2.661793
Н	0.776830	5.547668	2.847573
Н	2.307788	4.974278	3.424945
Н	0.718040	11.162490	2.560467
Н	1.189163	10.981631	0.883643
Н	-1.204362	10.771422	1.033173
Н	-0.585399	9.170609	0.629710
Н	-1.126578	9.533439	2.273577
Н	6.132099	8.227597	3.084751
Н	5.857006	9.805380	2.512547
Н	7.246599	8.530914	0.865473
Н	5.985808	7.307856	0.697057
Н	5.703866	8.933766	0.111942
Н	4.893582	3.701602	4.587262
Н	6.333407	4.589403	4.116477
Н	7.487058	4.655373	9.809972
Н	7.316890	2.455020	8.658533
Н	6.364987	2.318258	6.364210
Н	7.360850	7.327250	9.423907
Н	5.615650	7.227413	9.209112
Н	0.253295	9.718980	5.413334
Н	2.880274	10.985576	8.542423

Н	1.043173	10.714311	10.200147
Н	-1.197536	9.946745	9.462582
Н	-1.600169	9.452724	7.062941
Н	7.288473	10.602437	8.516006
Н	7.009339	12.197930	7.973266
Н	8.987457	12.143460	9.473043
Н	9.807932	10.990934	8.415762
Н	9.513474	12.629205	7.858495
Н	8.206205	7.015659	4.978190
Н	8.662483	7.601439	3.400800
Н	10.564669	6.392794	4.439512
Н	10.984918	8.090862	4.207821
Н	10.573020	7.503664	5.813538
Н	8.084732	11.845948	1.973724
Н	7.268201	13.075036	2.901692
Н	9.420566	13.943060	1.994422
Н	9.529261	13.898261	3.757709
Н	10.312571	12.649168	2.798249
Н	0.680188	4.964228	5.284034
Н	1.854596	6.244271	5.652335
Н	0.283787	6.661374	5.017843

Table S11 Coordinates of $[Cu_2L(\mu-PhPO_4)(NO_3)]^+$ optimized at the B3LYP/6-311G(d) level.

Atom	Coordinates in Å		
Atom	Х	Y	Ζ
Cu	4.858249	12.550141	4.057855
Cu	5.756700	7.290285	5.957920
Р	4.394830	10.049847	5.951296
0	4.436150	8.519404	5.632717
Ν	4.962746	14.360646	3.352828
Ν	6.513021	5.686364	6.738273
Ν	6.061867	13.437698	5.579836
С	7.552803	13.343752	5.506298
С	8.042381	11.928875	5.268815
С	8.410952	11.525668	3.971814
С	8.780873	10.199483	3.765844
С	8.731457	9.241666	4.774942
С	8.370596	9.649575	6.071788
С	8.269353	8.625593	7.181339
Ν	6.860153	8.194241	7.465459
Ν	5.061558	5.903250	4.529714
С	4.891669	6.254682	3.071461
С	3.919242	7.382827	2.781146

С	4.386309	8.642976	2.344684
С	3.474168	9.652391	1.977295
С	3.971439	10.949918	1.358870
N	3.915887	12.190591	2.194716
С	4.137407	13.375418	1.326948
С	4.480273	14.607563	2.132355
С	5.282046	15.335089	4.216276
С	5.598026	14.847141	5.616490
С	5.192332	16.664585	3.826532
С	4.719478	16.950672	2.545462
С	4.341502	15.919290	1.689597
С	2.083971	9.412209	2.061300
С	1.658641	8.168039	2.516584
С	2.538114	7.148187	2.874552
С	1.934264	5.850560	3.380574
С	1.067748	10.474990	1.675298
С	-0.387673	10.018984	1.546734
С	5.878895	8.908747	2.275263
С	6.529017	8.522195	0.936240
С	5.835921	4.640312	4.692529
С	6.386504	4.517041	6.100475
С	6.942584	5.792170	8.004329
С	7.348273	4.654043	8.689992
С	7.258877	3.422611	8.038932
С	6.760603	3.339826	6.737899
С	6.821496	7.201695	8.564418
С	0.585491	9.858585	6.643710
С	1.920473	9.962414	7.033241
С	2.295785	9.683598	8.347891
С	1.323858	9.274313	9.260562
С	-0.009195	9.151346	8.878037
С	-0.373600	9.454199	7.566186
0	4.853358	10.797512	4.692008
0	5.140634	10.389883	7.228974
С	8.084558	11.007090	6.334307
С	7.915846	11.490714	7.766483
С	9.258411	11.912685	8.391123
С	9.109841	7.813853	4.422416
С	10.585905	7.479560	4.696285
С	8.465468	12.471915	2.785898
С	9.771258	13.281763	2.710107
0	2.804079	10.394123	6.063054
С	1.424852	5.943009	4.831752
Н	5.730764	12.946956	6.408076
Н	7.982283	13.768175	6.419374
Н	7.865398	13.999774	4.696265

Н	9.082551	9.891952	2.768326
Н	8.695737	9.013106	8.111181
Н	8.837951	7.728615	6.939365
Н	6.272939	9.028255	7.663280
Н	4.125623	5.751297	4.901049
Н	4.564583	5.347436	2.550827
Н	5.886999	6.477648	2.696930
Н	5.001378	10.846991	1.024339
Н	3.384252	11.138482	0.451364
Н	2.979048	12.310019	2.612140
Н	3.263481	13.571058	0.696040
Н	4.973190	13.154489	0.653146
Н	6.318064	15.503215	6.116795
Н	4.659202	14.866922	6.174581
Н	5.457429	17.460070	4.513304
Н	4.625303	17.981801	2.222935
Н	3.938354	16.130166	0.705981
Н	0.595723	7.966799	2.583046
Н	1.092672	5.578017	2.736083
Н	2.640333	5.018161	3.288219
Н	1.104186	11.289023	2.406723
Н	1.367503	10.923920	0.720230
Н	-1.004261	10.853092	1.205201
Н	-0.504566	9.203216	0.827515
Н	-0.802606	9.691087	2.503015
Н	6.377055	8.386752	3.094344
Н	6.067440	9.955589	2.502024
Н	7.602675	8.733931	0.939734
Н	6.402747	7.460016	0.707278
Н	6.089091	9.071372	0.099610
Н	5.237776	3.761914	4.429713
Н	6.672805	4.673664	3.987679
Н	7.707815	4.719443	9.710251
Н	7.563282	2.518946	8.555337
Н	6.661923	2.382249	6.240056
Н	7.590438	7.395834	9.318808
Н	5.850967	7.285717	9.064695
Н	0.318126	10.123547	5.627802
Н	3.325192	9.827455	8.649266
Н	1.614130	9.068505	10.286607
Н	-0.759921	8.841767	9.597368
Н	-1.412925	9.388048	7.260812
Н	7.442695	10.730564	8.383946
Н	7.215941	12.323095	7.818378
Н	9.115654	12.258234	9.418355
Н	9.973725	11.085574	8.413139

Н	9.729661	12.723159	7.828844
Н	8.467861	7.099323	4.949547
Н	8.909933	7.656229	3.358549
Н	10.816911	6.451867	4.403073
Н	11.242731	8.143948	4.130396
Н	10.844282	7.593441	5.752457
Н	8.367554	11.883089	1.868973
Н	7.608682	13.151791	2.789328
Н	9.775495	13.934332	1.833172
Н	9.916484	13.908458	3.594013
Н	10.636425	12.618338	2.638216
Н	1.041028	4.978469	5.175708
Н	2.200746	6.279017	5.527159
Н	0.618407	6.673218	4.918279
0	1.677229	13.102925	3.609527
0	3.108726	13.363227	5.241921
0	0.976060	13.443291	5.636282
N	1.891384	13.300481	4.847086