Electronic Supporting Information

Group 2 metal (Mg, Ca, Sr) silylamides supported by a cyclen-derived macrocyclic polyamine

Debabrata Mukhejee, Satoru Shirase, Klaus Beckerle, Thomas P. Spaniol, Kazushi Mashima, and Jun Okuda*

Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52056 Aachen, Germany Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560–8531, Japan

Table of Contents

Spectroscopic characterization of compounds 1-6	S2
Variable temperature ¹ H NMR spectroscopy of 6	S14
Line shape analysis and Eyring plot	 S15
X-ray crystallography	 S17
References	S19

1. Spectroscopic characterization of compounds 1-6.

Figure S2. ${}^{13}C{}^{1}H$ NMR spectrum of 1 in THF- d_8 .

 ν (cm⁻¹)

Figure S4. FT-IR (KBr) spectrum of 1.

Figure S6. ¹³C{¹H} NMR spectrum of **2** in benzene- d_6 .

Figure S7. ²⁹Si{¹H} NMR spectrum of **2** in benzene- d_6 .

Figure S8. FT-IR (KBr) spectrum of 2.

Figure S10. ¹³C{¹H} NMR spectrum of **3** in benzene- d_6 .

Figure S11. ²⁹Si{¹H} NMR spectrum of **3** in benzene- d_6 .

Figure S12. FT-IR (KBr) spectrum of 3.

Figure S13. ¹H NMR spectrum of **4** in benzene- d_6 .

Figure S14. ¹³C{¹H} NMR spectrum of **4** in benzene- d_6 .

Figure S15. ²⁹Si{¹H} NMR spectrum of 4 in benzene- d_6 .

Figure S16. FT-IR (KBr) spectrum of 4.

Figure S17. ¹H NMR spectrum of **5** in benzene- d_6 .

Figure S18. ¹³C{¹H} NMR spectrum of **5** in benzene- d_6 .

Figure S19. ²⁹Si{¹H} NMR spectrum of **5** in benzene- d_6 .

Figure S20. FT-IR (KBr) spectrum of 5.

Figure S22. ¹³C $\{^{1}H\}$ NMR spectrum of **6** in benzene- d_{6} .

Figure S23. ²⁹Si{¹H} NMR spectrum of **6** in benzene- d_6 .

Figure S24. FT-IR (KBr) spectrum of 6.

2. Variable temperature ¹H NMR spectroscopy of 6.

Variable temperature NMR analysis was conducted on a freshly prepared toluene- d_8 solution of **6**. The Si*H* resonance at 4.88 ppm (${}^1J_{SiH} = 164$ Hz) at 298 K broadens and shifts downfield at 253 K. Further cooling gives two separate and well-resolved resonances of equal intensity at 5.15 ppm (${}^1J_{SiH} = 172$ Hz) and 4.90 ppm (${}^1J_{SiH} = 158$ Hz) at 193 K with a frequency difference of $\Delta v_C = 101$ Hz. Likewise, the initially broad SiH Me_2 signal at room temperature splits into four separate resonances at 193 K. For the ligand L, the two sharp NMe singlets are severely broadened at low temperature. The CH_2 protons of the Me₃TACD ligand that were initially broad at room temperature become sharper at low temperature with two sets significantly moved to higher field.

Figure S25. Variable temperature NMR spectra of **6** in Toluene- d_8 . **Top:** SiHMe₂ region. **Bottom:** Me₃TACD and SiHMe₂ region.

3. Line shape analysis and Eyring plot.

Line shape analysis was carried out with the program TopSpin 3.2 starting from a model of two spins-1/2 at 5.10 ppm (experimental low temperature limit) and 4.85 ppm.^{S1} An interaction with two further spins with a pseudospin of 3 (each) at 0.58 and 0.79 ppm due to the methyl groups was simulated with coupling constants of J = 4.0 Hz. The reaction was defined as an exchange of spin 1 against spin 2 (and vice versa). The exchange rate and the overall shift of the signals were adjusted manually to obtain the best overlap. This model agrees with a process in which the two silicon-bonded protons exchange at elevated temperature. However, it does not describe the more complex behavior observed for the methyl groups. The significant overall shift of the Si*H*-signals with increasing temperature implies additional processes other than the exchange of β -agostic interactions.

Spin 1 5.0012 ppm/pseudospin 0.5 Spin 2 4.8064 ppm/pseudospin 0.5 Spin 3 0.583 ppm/pseudospin 3 Spin 4 0.7929ppm/pseudospin 3 J1/3 4.0Hz J2/4 4.0Hz LB3.5 Hz Exchanges 1-2 2-1 k= 31.15 Hz Best Overlap 81.414% Fit 4.6 - 5.4 Intensity 40 550

J1/3 4.0Hz J2/4 4.0Hz LB2.8 Hz

Exchanges

92.434% Fit 4.6 - 5.4 Intensity 24 200

J1/3 4.0Hz J2/4 4.0Hz

LB1.5 Hz Exchanges

k= 10000 Hz

Best Overlap 85.394%

Fit 4.6 – 5.4

Intensity 30 860

1-2

2-1

k= 552.585 Hz Best Overlap

1-2 2-1

An Eyring plot derived from the above analysis provides the activation parameters as $\Delta H^{\ddagger} = 9.7 \pm 0.8$ kcal mol⁻¹ and $\Delta S^{\ddagger} = -8.0 \pm 0.4$ cal mol⁻¹ K⁻¹ that lead to $\Delta G^{\ddagger}_{253K} = 11.7 \pm 0.9$ kcal mol⁻¹ at the coalescence temperature 253 K.

Figure S27. Eyring plot for the simulated exchange rates.

4. X-ray crystallography.

Single-crystal X-ray diffraction measurements of **1**, **2**, **3**, **4** and **5** were performed on a Bruker AXS diffractometer equipped with an Incoatec microsource and an APEX area detector using MoK α radiation ($\lambda = 0.71073$ Å), multilayer optics and ω -scans. Temperature control was achieved with an Oxford cryostream 700. The SMART program was used for data collection and unit cell determination; processing of the raw data frame was performed using SAINT+,⁸² multi scan absorption corrections were applied with SADABS.⁸³ The structures were solved by direct methods (SIR-92).⁸⁴ **1** shows crystallographic inversion symmetry for the molecule. Compound **2** shows crystallographic C_2 symmetry, atom Si1 is located on the axis of rotation. The CH_2 carbon atoms of the Me₃TACD ligands in **1** (C1 – C8) are disordered. The disorder could be modeled with split positions. The CH_2 carbon atoms of the Me₃TACD ligands in **1** (C1 – C8) are disordered. The disorder was modeled with split positions. The CH_3 carbon atom C6 are disordered. The disorder was modeled with split positions. The refinements were performed against F^2 with the program SHELXL-2013 using all reflections.⁸⁵ Hydrogen atoms were included as riding on calculated positions with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}$.(non-H), except for the atoms bound

to silicon (H1 and H2 in 2, H2, H3 and H4 in 3 as well as H2 in 4, H1 and H2 in 5). These atoms were localized in difference Fourier maps and refined in their position with isotropic displacement parameters $U_{iso}(H) = 1.2U_{eq}(Si)$. All non-hydrogen atoms were refined anisotropically. Refinement results are given in Table S1. Graphical representations were performed with the program DIAMOND.^{S6} CCDC-1537652 (1), -1537653 (2), -1537654 (3), -1537655 (4), -1537656 (5) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from the Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

	1	2	3	4	5
chemical formula	$C_{34}H_{86}N_{10}Si_4Sr_2$	$C_{19}H_{54}N_6Si_4Sr$	$C_{19}H_{52}N_6Si_4Sr$	$C_{21}H_{56}N_6Si_4Sr$	$C_{15}H_{39}N_5MgSi_2$
fw (g·mol ⁻¹)	922.72	566.66	564.64	592.69	370.00
space group	$P2_{1}/n$	<i>C</i> 2/c	$P\overline{1}$	$P2_{1}2_{1}2_{1}$	Pbca
crystal size (mm)	0.17×0.18×0.38	0.32×0.38×0.42	0.17×0.33×0.34	0.13×0.16×0.27	0.21×0.45×0.49
unit cell parameters					
a (Å)	9.3831(12)	21.541(2)	9.2006(18)	10.6835(18)	17.331(15)
<i>b</i> (Å)	26.657(3)	10.4100(11)	9.5438(9)	17.274(3)	13.273(12)
<i>c</i> (Å)	9.8491(12)	16.409(5)	19.2910(18)	17.745(3)	18.878(18)
α (°)			81.0103(14)		
β (°)	100.519(2)	121.6531(15)	87.999(15)		
γ (°)			68.1159(14)		
$V(\text{\AA}^3)$	2422.1(5)	3132.2(11)	1552.4(4)	3274.8(10)	4343(7)
Z	2	4	2	4	8
<i>T</i> (K)	100(2)	100(2)	100(2)	100(2)	110(2)
$ \mu(\operatorname{Mo} K_{\alpha}) $ $ (\operatorname{mm}^{-1}) $	2.335	1.891	1.908	1.812	0.199
reflns	25518	21371	19280	10065	24014
independent reflns ($R_{int.}$)	6076 (0.0784)	3922 (0.0444)	6526 (0.0460)	6158 (0.0603)	4227 (0.0582)
observed reflns	4711	3311	5726	4488	3505
parameters	315	202	291	305	221
goodness of	1.010	1.033	0.943	0.928	1.040

Table S1. Crystal data and structure refinement.

fit on F^2					
final R indices					
$R1, wR2$ $[I \ge 2\sigma(I)]$	0.0403, 0.0827	0.0290, 0.0686	0.0322, 0.0764	0.0572, 0.1131	0.0394, 0.0962
<i>R</i> 1, <i>wR</i> 2 (all data)	0.0608, 0.0898	0.0386, 0.0718	0.0392, 0.0796	0.0894, 0.1262	0.0509, 0.1046

5. References.

- S1 Bruker, TopSpin 3.2, Bruker BioSpin, Billerica, Massachusetts, 2013.
- S2 Bruker, SAINT-Plus, Bruker AXS Inc., Madison, Wisconsin, USA, 1999.
- S3 Bruker, SADABS, Bruker AXS Inc. Madison, Wisconsion, USA, 2004.
- S4 A. Altomare, G. Cascarano, C. Giacovazzo and A Guagliardi, A. J. Appl. Crystallogr. 1993, 26, 343-350.
- S5 G. M. Sheldrick, Acta Crystallogr. Sect. A, 2008, 64, 112–122.
- S6 K. Brandenburg, DIAMOND, Crystal Impact GbR, Bonn, Germany, 2017.