#### DT-ART-05-2017-001776 (Revised)

Exploring the effect of hydroxylic and non-hydroxylic solvents on the reaction of  $[V^{IV}O(\beta$ -diketonate)<sub>2</sub>] with 2-Aminobenzoylhydrazide in aerobic and anaerobic conditions. Valence delocalisation in mixed-valence  $V^{IV}$ -O- $V^{V}$  species

Nirmalendu Biswas,<sup>†</sup> Debashis Patra,<sup>†</sup> Bipul Mondal,<sup>†</sup> Sachinath Bera,<sup>‡</sup> Swarnali Acharyya,<sup>#,□</sup> Anup Kumar Biswas,<sup>#,□</sup> Titas Kumar Mukhopadhyay,<sup>ψ</sup> Amrita Pal,<sup>¶</sup> Michael G. B. Drew,<sup>§</sup> and Tapas Ghosh<sup>\*,†</sup>

#### **Electronic Supporting Information (ESI)**











Fig. S3. Cyclic voltammogram of 3 in  $CH_2Cl_2$ 



Fig. S4. Cyclic voltammogram of 7 in  $CH_2Cl_2$ .



Fig. S5. X-band EPR spectra of complex 1 in  $CH_2Cl_2$  solution (a) at 300 K and (b) at 77 K.

![](_page_4_Figure_0.jpeg)

Fig. S6. X-band EPR spectra of 8a in  $CH_2Cl_2$  solution (a) at 300 K and (b) at 77 K.

![](_page_4_Figure_2.jpeg)

Fig. S7. Electronic spectra of complexes 7a (a) and 8a (b) in  $CH_2Cl_2$  solution at room temperature.

![](_page_5_Figure_0.jpeg)

Fig. S8. Experimental proof of cell death treated with the complexes 1-8.

![](_page_6_Figure_0.jpeg)

**Fig. S9.** Cytotoxic activity of VOSO<sub>4</sub> at different concentrations.

## Table S1. Calculated Geometrical parameter for complex 2

bond lengths, Å

| V-01             | 1.940  |
|------------------|--------|
| V-O2             | 1.918  |
| V-O3             | 1.940  |
| V-04             | 1.918  |
| V-N1             | 2.064  |
| V-N4             | 2.064  |
| bond angles, deg |        |
| 01-V-02          | 134.77 |
| 01-V-03          | 82.13  |
| 01-V-04          | 86.12  |
| O2-V-O3          | 86.13  |
| O2-V-O4          | 130.05 |
| O3-V-O4          | 134.75 |
| 01-V-N1          | 83.39  |
| O2-V-N1          | 74.42  |
| O3-V-N1          | 134.55 |
| 04-V-N1          | 86.56  |
| 01-V-N4          | 134.55 |
| O2-V-N4          | 86.56  |
| O3-V-N4          | 83.39  |
| O4-V-N4          | 74.42  |
| N1-V-N4          | 134.22 |

| Table S2. Calculated Geometrical parameter | rs for complexes 3 and 4 |
|--------------------------------------------|--------------------------|
|--------------------------------------------|--------------------------|

| Complex                 | 3      | 4      |
|-------------------------|--------|--------|
| bond lengths,           | Å      |        |
| V-01                    | 1.590  | 1.592  |
| V-02                    | 1.886  | 1.879  |
| V-O3                    | 1.918  | 1.920  |
| V-04                    | 1.809  | 1.783  |
| V-N1                    | 2.136  | 2.093  |
| V-04 <sup>(i)</sup>     | 2.578  |        |
| bond angles, o          | deg    |        |
| 01-V-02                 | 101.24 | 106.60 |
| 01-V-03                 | 102.80 | 110.51 |
| 01-V-04                 | 104.40 | 108.37 |
| O2-V-O3                 | 148.64 | 138.51 |
| O2-V-O4                 | 100.51 | 97.10  |
| O3-V-O4                 | 92.70  | 88.37  |
| 01-V-N1                 | 97.46  | 97.51  |
| O2-V-N1                 | 82.93  | 83.09  |
| O3-V-N1                 | 74.27  | 74.42  |
| O4-V-N1                 | 156.64 | 152.76 |
| 01-V-04 <sup>(i)</sup>  | 175.57 |        |
| O2 -V-O4 <sup>(i)</sup> | 78.81  |        |
| O3-V-O4 <sup>(i)</sup>  | 78.75  |        |
| O4-V-O4 <sup>(i)</sup>  | 71.30  |        |
| N1-V-O4 <sup>(i)</sup>  | 86.94  |        |

## Table S3. Calculated Geometrical parameter for complex 8

bond lengths, Å

| V1-01            | 1.590  |  |
|------------------|--------|--|
| V1-O2            | 1.856  |  |
| V1-O3            | 1.932  |  |
| V1-O4            | 1.798  |  |
| V1-N1            | 2.104  |  |
| V2-O4            | 1.796  |  |
| V2-O5            | 1.590  |  |
| V2-O6            | 1.856  |  |
| V2-07            | 1.932  |  |
| V2-N4            | 2.105  |  |
| V1-V2            | 3.126  |  |
| bond angles, deg |        |  |
| 01-V1-O2         | 104.77 |  |
| 01-V1-O3         | 105.30 |  |
| 01-V1-O4         | 109.82 |  |
| 01-V1-N1         | 98.74  |  |
| O2-V1-O3         | 144.48 |  |
| O2-V1-O4         | 99.27  |  |
| O2-V1-N1         | 82.81  |  |
| O3-V1-O4         | 87.87  |  |
| O3-V1-N1         | 74.36  |  |
| 04-V1-N1         | 149.57 |  |
| 05-V2-04         | 109.77 |  |
| 05-V2-06         | 104.94 |  |
| 05-V2-07         | 105.45 |  |

| O5-V2-N4 | 98.48  |
|----------|--------|
| 06-V2-O4 | 99.35  |
| 06-V2-07 | 144.18 |
| O6-V2-N4 | 82.86  |
| 07-V2-O4 | 87.75  |
| 07-V2-N4 | 74.34  |
| O4-V2-N4 | 149.81 |
| V1-04-V2 | 120.78 |

| Complex | E <sub>cal/nm</sub> | f <sub>cal</sub> | Excitation               |
|---------|---------------------|------------------|--------------------------|
| 1       | 380.13              | 0.2929           | HOMO-1→LUMO+2 (0.57689)  |
|         |                     |                  | HOMO-2→LUMO (0.34231)    |
| 2       | 421.54              | 0.1991           | HOMO→LUMO+3 (0.65378)    |
|         |                     |                  | HOMO-2→LUMO (0.53933)    |
| 3       | 371.24              | 0.2976           | HOMO-1→LUMO+7 (0.32328)  |
|         |                     |                  | HOMO→LUMO+6 (0.41386)    |
| 4       | 376.81              | 0.1803           | HOMO-1→LUMO+1 (0.61192)  |
|         |                     |                  | HOMO→LUMO+3 (0.29007)    |
| 5       | 380.84              | 0.3053           | HOMO-1→LUMO+7 (-0.30482) |
|         |                     |                  | HOMO →LUMO+6 (0.47970)   |
| 6       | 469.5               | 0.237            | HOMO →LUMO+1 (0.44957)   |
|         |                     |                  | HOMO →LUMO+2 (-0.42639)  |
| 7       | 371.8               | 0.1234           | HOMO-8→LUMO (0.38858)    |
|         |                     |                  | HOMO-1→LUMO+6 (0.41808)  |
| 8       | 510                 | 0 2504           | HOMO-1→LUMO+3 (0 30856)  |
|         |                     |                  | HOMO→LUMO+2 (0.48814)    |

# Table S4. Vertical excitation energies (Ecal), oscillator strengths (fcal) and type ofexcitations of the excited states obtained from TD-DFT calculations of 1-8