Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Electronic Supporting Information

for the

Manuscript Entitled

Detection of anticoagulant drug warfarin by palladium complexes

Pramod Kumar, Vijay Kumar and Rajeev Gupta*

Department of Chemistry, University of Delhi, Delhi 110 007 (India)

<u>Index</u>

- 1. Experimental Section
- 2. Synthesis
- 3. Physical Measurements
- 4. X-ray Crystallography
- 5. Determination of Stern-Volmer Constant (K_{SV}) and Binding Constant (K_b)
- 6. Determination of Detection Limit
- 7. References

1. Experimental Section

Materials. All reagents and metal salts were commercial available and were used without further purifications. HPLC grade solvents were used for the UV-visible and fluorescence spectral measurements. Warfarin sodium (Na⁺WR⁻) was obtained from the TCI Chemicals and used as received. In addition, commercial drug WARF was also used that provided nearly identical results as that of Na⁺WR⁻ obtained from the TCI Chemicals. All stock solutions (1 mM) of palladium complexes and anticoagulant drug Na⁺WR⁻ were prepared in CH₃CN and/or aqueous HEPES buffer (10 mM, pH = 7.4).

2. Synthesis. Ligands $H_2L^1-H_2L^4$ were synthesized according to the reported procedure.^{1,2} The palladium complexes 1 and 3 were synthesized according to the literature report.³

Complex 2. Ligand H₂L² (0.10 g, 0.224 mmol) was dissolved in CH₃CN (5 mL) and a solution of Pd(CH₃COO)₂ in 2 mL CH₃CN (0.050 g, 0.224 mmol)was added drop-wise. The reaction mixture was stirred for 2 h at ambient temperature during which a pale yellow colored compound was precipitated. This product was filtered, washed with MeOH and dried under vacuum. Yellow crystals were obtained by the slow evaporation of a CH₃CN solution of the product within three days. Yield: 0.108 g (82%). Anal. Calc. for C₃₁H₂₄N₄O₂Pd: C, 63.00; H, 4.09; N, 9.48. Found: C, 63.06; H, 4.12; N, 9.53. FTIR spectrum (Zn-Se ATR, cm⁻¹): 2327- 2297 (CH₃CN), 1601 (C=O), 1374. UV/Vis (CH₃CN): λ_{max} (ε , M⁻¹ cm⁻¹) = 216 (125140), 335 (20500). ¹H NMR spectrum (400 MHz, DMSO-d₆): δ = 8.23 (t, *J* = 6.88 Hz, 1H), 8.09 (d, *J* = 6.87 Hz, 2H), 7.90 (d, *J* = 7.64 Hz, 2H), 7.77-7.71 (m, 6H), 7.55-7.45 (m, 6H), 4.74 (s, 4H), 2.06 (s, CH₃CN). ¹³C NMR spectrum (400 MHz, DMSO-d⁶): 170.40, 133.50, 131.05, 128.86, 126.82, 126.28, 125.85, 124.85, 123.15.

Complex 4. This compound was synthesized similarly as mentioned for complex **2** using following chemical: H_2L^4 (0.10 g, 0.193 mmol) and Pd(CH₃COO)₂ (0.043 g, 0.193 mmol). Orange-red crystals were obtained by the slow evaporation of a CH₃CN solution of the product within 2 – 3 d. Yield: 0.110 g (86%). Anal. Calc. for C₃₇H₂₄N₄O₂Pd: C, 67.02; H, 3.65; N, 8.45. Found: C, 67.18; H, 3.59; N, 8.38. FTIR spectrum (cm⁻¹): 2332-2305 (CH₃CN), 1623 (C=O). UV/Vis (CH₃CN): λ_{max} (ε , M⁻¹ cm⁻¹) = 254 (93850), 324 (24650), 374 (11450), 394 (8090). ¹H

NMR spectrum (400 MHz, DMSO-d⁶): $\delta = 8.44$ (d, J = 10.1 Hz, 4H), 8.33 (t, J = 7.8 Hz, 1H), 8.03-7.91 (m, 6H), 7.88-7.77 (m, 4H), 7.51-7.38 (m, 6H), 2.03 (s, CH₃CN). ¹³C NMR spectrum (400 MHz, DMSO-d⁶): 168.79, 152.59, 144.01, 132.10, 131.92, 131.16, 129.65, 128.61, 128.32, 128.19, 127.92, 126.29, 126.22, 126.04, 125.58, 125.42, 123.20.

3. Physical Measurements

Elemental analysis data were obtained from Elementar Analysen Systeme GmbH Vario EL-III instrument. The ¹H and ¹³C NMR spectra were recorded with a JEOL 400 MHz instrument. The FTIR spectra (Zn–Se ATR) were recorded with a Perkin-Elmer Spectrum-Two spectrometer. The absorption spectra were recorded with a Perkin-Elmer Lambda-25 spectrophotometer. Fluorescence spectral studies were performed with a Cary Eclipse fluorescence spectrophotometer. Time-resolved fluorescence spectra were recorded using a picosecond Fluorimeter from Horiba JobinYvon (FluoroHub). All UV-visible and fluorescence spectra were recorded on Jasco spectropolarimeter (J815, Japan) equipped with peltier accessory. The spectra were collected at a scan rate speed of 50 nm min⁻¹ with a response time of 1 s. Each spectrum was baseline corrected and the final plot was taken as an average of three accumulated plots in the range of 200 nm–300 nm. ESI⁺-MS mass spectra was recorded with a Q-TOF LC/MS Agilent mass spectrometer whereas ESI⁻-MS mass spectra was recorded with Bruker micrOTOFTM-Q II. Docking studies were performed using the Hex 6 software.

4. X-ray Crystallography

Single crystals suitable for the X-ray diffraction studies were grown by the slow evaporation of a CH₃CN solution of complex **4**. The intensity data were collected at 298 K with an Oxford XCalibur CCD diffractometer equipped with graphite monochromatic Mo- $K\alpha$ radiation ($\lambda = 0.71073$ Å).⁴ Data reduction was performed with the CrysAllisPro program (Oxford Diffraction ver. 171.34.40).⁴ The structure was solved by direct methods using SIR-92 program⁵ and refined on F^2 using all data by full matrix least-squares procedures with SHELXL-2014/7⁶The hydrogen atoms were placed at the calculated positions and included in the last cycles of the refinement. All calculations were done using the WinGX software package.⁷ Crystallographic data collection

and structure solution parameters are summarized in Table S1. CCDC-1522061 contains the supplementary crystallographic data for this paper. This data can be obtained free of charge from The Cambridge Crystallographic Data Center via <u>www.ccdc.cam.uk/data_request/cif</u>.

5. Determination of Stern-Volmer Constant (K_{SV}) and Binding Constant (K_b)

Stern-Volmer constant (K_{SV}) were computed by the Stern–Volmer equation (1)⁸ where, I_0 and I are the emission in the absence and in the presence of complexes **1-4** used as the quencher (Q).

The binding constant (K_b) was computed by the Benesi-Hildebrand equation (2)⁹ where *I*, I_0 and I_{min} are the emission intensities of Na⁺WR⁻ in presence of complexes, in absence of complexes and minimum fluorescence intensity in presence of complexes, respectively. K_b value was obtained by the ratio of intercept and slope in $1/(I-I_0)$ vs. 1/[1-4] plots.

$$I_0/I = 1 + K_{\rm SV} [1-4]$$
 (1)

$$1/(I-I_0) = 1/\{K_b(I_0 - I_{\min})[\mathbf{1}-\mathbf{4}]\} + 1/(I_0 - I_{\min})$$
(2)

6. Determination of Detection Limit

From fluorescence spectral titration: The detection limit was calculated according to equation $(3)^{10}$ where, *k* is the slope of a plot of emission of Na⁺WR⁻ versus concentration of complexes 1-4 and σ is the standard deviation of ten blank replicate fluorescence measurements of Na⁺WR⁻.

Detection limit:
$$3\sigma/k$$
 (3)

From UV-visible spectral titration: The detection limit for the detection of Na⁺WR⁻ by Pd(II) complexes **3** and **4** in CH₃CN and in HEPES buffer was calculated according to equation (4)¹¹ where, k' is the slope of a plot of absorbance of Pd(II) complexes **3** or **4** versus concentration of Na⁺WR⁻ and σ' is the standard deviation of ten blank replicate UV-visible measurements of complexes.

Detection limit:
$$3\sigma'/k'$$
 (4)

7. References

- 1. P. Kumar, V. Kumar and R. Gupta, *RSC Adv.*, 2015, *5*, 97874.
- 2. A. N. Dwyer, M. C. Grossel and P. N. Horton, Supramol. Chem., 2004, 16, 405.
- 3. Q.-Q. Wang, R. A. Begum and V. W. Day, J. Am. Chem. Soc., 2013, 135, 17193.
- 4. CrysAlisPro, v. 1.171.33.49b, Oxford Diffraction Ltd., 2009.
- 5. A. Altomare, G. Cascarano, C. Giacovazzo and A. Guagliardi, J. Appl. Crystallogr., 1993, 26, 343-350.
- 6. Sheldrick, G. M. SHELXL-2014/7: Program for the solution of crystal structures, University of Gottingen, Gottingen, Germany, 2014.
- Farrugia, L. J. WinGX, v. 1.70, An Integrated System of Windows Programs for the Solution, Refinement and Analysis of Single- Crystal X-ray Diffraction Data, Department of Chemistry, University of Glasgow, 2003.
- 8. A. Ganguly, B. K. Paul, S.Ghosh, S. Kar and N.Guchhait, Analyst, 2013, 138, 6532.
- 9. H. A. Benesi and J. H. Hildebrand, J. Am. Chem. Soc., 1949, 71, 2703.
- A. Senthilvelan, I. Ho, K. Chang, G. Lee, Y. Liu and W. Chung, *Chem.-Eur. J.*, 2009, 15, 6152.
- S. Goswami, K. Aich, S. Das, A. K. Das, A. Mannaa and S. Halder, *Analyst*, 2013, 138, 1903.

Figure S1. FTIR spectrum of complex 2.

Figure S2. FTIR spectrum of complex 4.

Figure S3. ¹H NMR spectrum of complex 2 in DMSO- d_6 where * represents the residual solvent and/or adventitious water peak(s).

Figure S4. ¹³C NMR spectrum of complex 2 in DMSO-d₆.

Figure S5. ¹H NMR spectrum of complex 4 in DMSO- d_6 where * represents the residual solvent and/or adventitious water peak(s).

Figure S6. ¹³C NMR spectrum of complex 4 in DMSO-d₆.

Figure S7. UV-visible spectra of complexes 1-4 recorded in CH_3CN (20 μ M).

Figure S8. Change in emission intensity of Na⁺WR⁻ in CH₃CN (λ_{ex} = 320 nm) and in HEPES buffer (10 mM, pH = 7.4) (λ_{ex} = 310 nm).

Figure S9. Emission spectra of Na⁺WR⁻ (2 μ M) and after its interaction with Pd(II) complexes (0-2.8 μ M) (a) **1**; (b) **2**; (c) **3** and (d) **4** in CH₃CN ($\lambda_{ex} = 320$ nm).

Figure S10. Emission spectra of Na⁺WR⁻ (20 μ M) and after its interaction with Pd(II) complexes (0-200 μ M) (a) **1**; (b) **2**; (c) **3** and (d) **4** in HEPES buffer (10 mM, pH = 7.4) (λ_{ex} = 310 nm).

Figure S11. Determination of detection limit of (**a**) Na⁺WR⁻ (2 μ M) with Pd(II) complexes 1-4 (concentration was linear from 0 –1.2 μ M) in CH₃CN. (**b**) Na⁺WR⁻ (20 μ M) towards Pd(II) complexes 1-4 (concentration was linear from 0 –100 μ M) in HEPES buffer (10 mM, pH = 7.4).

Figure S12. Time-dependent emission intensity of Na⁺WR⁻ (2 μ M in CH₃CN, 20 μ M in buffer) in CH₃CN and in HEPES buffer (10 mM, pH = 7.4) as a function of concentration of complex **4**. Points at 0 second represent the emission of only Na⁺WR⁻ without the addition of complex **4**.

Figure S13. Change in absorbance of Pd(II) complexes (a) **3** (20 μ M) and (b) **4** (20 μ M) in presence of Na⁺WR⁻ (0 – 50 μ M) in CH₃CN.

Figure S14. Change in absorbance of Pd(II) complexes (a) **3** (10 μ M) and (b) **4** (10 μ M) in presence of Na⁺WR⁻ (0 - 25 μ M) in HEPES buffer (10 mM, pH = 7.4).

Figure S15. Determination of detection limit of Na⁺WR⁻ by UV-visible titration of (**a**) Pd(II) complexes **3** (20 μ M) and **4** (20 μ M) by Na⁺WR⁻ (0– 50 μ M) in CH₃CN. (**b**) Pd(II) complexes **3**

(10 μ M) and 4 (10 μ M) by Na⁺WR⁻ (0– 25 μ M) in HEPES buffer (10 mM, pH = 7.4).

Figure S16. Lifetime profile of Na⁺WR⁻ in absence and presence of Pd(II) complexes **3** and **4** (5 equiv.) in CH₃CN ($\lambda_{ex} = 280$ nm, $\lambda_{em} = 395$ nm).

Figure S17. (a) Circular dichroism spectra of Na⁺WR⁻ (100 μ M) in absence and presence of Pd(II) complexes **3** and **4** (5 equiv.) in CH₃CN. (b) Circular dichroism spectra of Na⁺WR⁻ (35

 μ M) in absence and presence of complexes **3** and **4** (10 equiv.) in HEPES buffer (10 mM, pH = 7.4).

Figure S18. (a) Change in emission intensity of Na⁺WR⁻+complex **4** (2 μ M, 20 μ M) in presence of BSA (0–40 mg/mL). (b) Change in emission intensity of Na⁺WR⁻ (2 μ M) in presence of BSA (0–40 mg/mL) and Na⁺WR⁻+complex **4** (2 μ M, 20 μ M) in presence of BSA (0–40 mg/mL) in HEPES buffer (10 mM, pH = 7.4).

Figure S19 (a) Emission spectra of Na⁺WR⁻ (2 μ M) and after its interaction with complexes 1-4 (2 μ M) in CH₃CN. (b) Emission spectra of 4-hydroxycoumarin (50 μ M) in absence and in presence of complexes 1-4 (50 μ M) in CH₃CN (λ_{ex} = 300 nm). (c) Emission spectra of coumarin (10 μ M) in absence and in presence of complexes 1-4 (10 μ M) in CH₃CN (λ_{ex} = 225 nm).

Figure S20. (a) ESI⁺-MS spectra of a mixture of complex 3 and Na⁺WR⁻ in CH₃CN. b and b' are isotopic patterns at m/z = 852 and its simulation, respectively.

Figure S21. (a) ESI⁺-MS spectrum of a mixture of complex 4 and Na⁺WR⁻ in CH₃CN. (b) The corresponding simulation pattern.

Figure S22. ESI⁻-MS spectrum of a mixture of complex **3** and Na⁺WR⁻ in CH₃CN along with its isotope distribution pattern and the corresponding simulated pattern for [**3**–CH₃CN+WR⁻]⁻.

Figure S23. ESI⁻-MS spectrum of a mixture of complex 4 and Na⁺WR⁻ in CH₃CN along with its isotope distribution pattern and the corresponding simulated pattern for [4–CH₃CN+WR⁻]⁻.

Figure S24. FTIR spectra of complex **4**, Na⁺WR⁻ and the isolated product from the reaction between complex **4** and Na⁺WR⁻.

Figure S25. ¹H NMR spectra of complex 4, Na⁺WR⁻ and complex $4 + Na^+WR^-$ in DMSO-d₆ where * represents the residual solvent and/or adventitious water peak(s).

Figure S26. Ball-and-stick representation of docked structure of complex **4** with WR (shown in a space-fill representation).

	CH ₃ CN			HEPES buffer (10 mM, $pH = 7.4$)		
Species	K_{SV} (M ⁻¹)	DL (nM)	$K_b (M^{-1})$	K_{SV} (M ⁻¹)	DL (μM)	K _b (M ⁻¹)
1+	2.92 x 10 ⁶	3.18	5.48 x 10 ⁵	2.60 x 10 ⁴	0.35	0.109 x 10 ⁵
Na+WR- 2 +	2.58 x 10 ⁶	3.25	4.84 x 10 ⁵	0.58 x 10 ⁴	0.72	0.042 x 10 ⁵
Na+WR- 3 +	3.18 x 10 ⁶	3.14	5.69 x 10 ⁵	5.19 x 10 ⁴	0.30	0.212 x 10 ⁵
Na+WR- 4 +	2.47 x 10 ⁶	3.11	6.38 x 10 ⁵	5.52 x 10 ⁴	0.29	0.282 x 10 ⁵
Na+WR-						

Table S1. Stern-Volmer Constants (K_{SV}), Detection Limits (DL) and binding Constants (K_b) for Na⁺WR⁻ with palladium complexes **1-4**.

 Table S2. Crystallographic data collection and structure solution parameters for complex 4.

Empirical Formula	$C_{37}H_{24}N_4O_2Pd$
Formula weight	663.00
T (K)	293(2)
System	Monoclinic
Space group	$P2_{1}/c$
a (Å)	9.875(5)
$b(\mathbf{A})$	30.125(5)
c (Å)	20.458(5)
α (°)	90
$\beta(\circ)$	91.168(5)
γ (°)	90
$V(Å^3)$	6085(4)
Z	8
$\rho_{\rm calc} ({\rm mg}/{\rm m}^3)$	1.447
F (000)	2688.0
Goodness-of-fit (GOF) on F ²	1.024
Final <i>R</i> indices $[I > 2\sigma(I)]$	$R_1 = 0.1018, wR_2 = 0.1768$
<i>R</i> indices (all data)	$R_1 = 0.2203, wR_2 = 0.2234$
CCDC No.	1522061