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Experimental section

Chemicals

Benzaldehyde, pyrrole, tributyl(phenylethynyl)stannane and Pd(PPhs)s were
purchased from Alfa Aesar and used as received. Dichloromethane for synthesis was
dried and distilled over CaH,. 1,4-dioxane was dried and distilled over Na metal and
benzophenone. Synthesis of the Ag and free-base diphenylethynyl corroles were
prepared following reported procedulres.1 2,3,7,8,12,13,17,18-octabromo-5,10,15-
triphenylcorrole and 2,3,7,8,12,13,17,18-octabromo-5,10,15-tritolylcorrole were
synthesized according to reported literature methods.” Crystals of CuTPC(PE), 3
suitable for single crystal X-ray diffraction were obtained from slow diffusion of
CH;0H into a CHCI; solution. The chloroform molecules are found to be disordered.
Hence SQUEEZE procedure’ was implemented in order to correct electron density
contribution from disordered CHCI; molecules. The data is deposited at CCDC
database (CCDC No 1532011). Dichloromethane (CH,Cl,, anhydrous, >99.8%,
EMD Chemicals Inc.) for electrochemistry were used as received. Benzonitrile
(PhCN, reagentPlus, 99%) for electrochemistry was purchased from Sigma-Aldrich
and freshly distilled over P,Os before use. Tetrahydrofuran (THF, for HPLC,
>99.9%) for electrochemistry was purchased from Sigma-Aldrich and freshly
distilled using a Solvent System PS-MD-5-13-495 from Innovative Technology.

Tetra-n-butylammonium perchlorate (TBAP) was purchased from Sigma-Aldrich.

Instrumentation
UV-visible spectra of the neutral compunds was recorded using a Cary 100

spectrophotometer. All '"H NMR measurements were performed using a Bruker
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AVANCE 500 MHz or JEOL ECX 400 MHz spectrometer in CDCl;. MALDI-TOF
mass spectra were measured using a Bruker UltrafleXtreme-TN MALDI-TOF/TOF
spectrometer with 2-(4-hydroxyphenylazo)benzoic acid (HABA) as a matrix.
Elemental analysis was carried out on Elementarvario EL III instrument. Cyclic
voltammetry was carried out using an EG&G Princeton Applied Research (PAR) 173
potentiostat coupled to an EG&GPAR Model 175 Universal Programmer. Current-
voltage curves were recorded on an EG&G PAR R-0151 X-Y recorder. A homemade
three-electrode cell was used for cyclic voltammetry measurements and consisted of
a glassy carbon working electrode, a platinum counter electrode and a homemade
saturated calomel reference electrode (SCE). The SCE was separated from the bulk
of the solution by a fritted bridge of low porosity, which contained the
solvent/supporting electrolyte mixture. EPR spectra were recorded using broker

spectrometer in toluene.

General synthetic procedure for synthesis of the di-phenylethynylcorroles
Cu metallation of free base phenylethynylcorroles were carried out as reported in the
literature.* A Silica gel column was used to purify the target copper corroles using a

1:2 ratio of CHCls/hexane compounds. 3 and 4 were synthesized in 80-90% yield.

3,17-diphenylethynyl-5,10,15-tripenylcorrolatocopper(Il) cation radical (3)

'H NMR in CDCl; (400 MHz): 8(ppm) 8.18 (s, 2H, B-pyrrole-H), 7.61 (s, 4H, meso-
phenyl-H), 7.48 (s, 12H, B- pyrrole-H and meso-phenyl-H), 7.21 (asym. d, 7H, J =
4.0 Hz, meso-phenyl-H and B- phenyl-H), 7.10 (d, 2H, J = 4.0 Hz, - phenyl-H), 7.00
(dd, 4H, J = 4, 8 Hz, - phenyl-H) MALDI/TOF-MS (m/z): found 787.76, calcd.
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[M+H]" 787.19. Anal. calcd. for Cs3sH3N4Cu: C, 80.85; H, 3.97; N, 7.12. Found: C,

80.71; H, 3.90; N, 7.15%.

3,17-diphenylethynyl-5,10,15-tritolylcorrolatocopper(Il) cation radical (4)

'H NMR in CDCl; (400 MHz): d(ppm) 8.13 (s, 2H, B-pyrrole-H), 7.53 (d, 4H, J = 8
Hz, meso-phenyl-H), 7.45 (d, J = 8 Hz, 2H, meso-phenyl-H), 7.31-7.20 (m, 14H, -
pyrrole-H, meso-phenyl-H and - phenyl-H), 7.15 (d, 2H, J = 8.0 Hz, B- phenyl-H),
7.01-6.99 (m, 4H, B- phenyl-H), 2.43(s, 3H, —CHs-H), 2.35(s, 6H, —CH3-H).
MALDI/TOF-MS (m/z): found 829.74, calcd. [M+H]" 829.24. Anal. calcd. for

CseH37N4Cu: C, 81.09; H, 4.50; N, 6.75. Found: C, 81.20; H, 4.62; N, 6.72%.

General synthetic procedure for p-octa-phenylethynylcorroles

Cu(Brg)TXC (0.060 g) was dissolved in 30 mL of distilled 1,4-dioxane and purged
with Ar gas for 15 minutes. To this, tributyl(phenylethynyl)stannane (12 equiv.) in 2
mL of degassed 1,4-dioxane was added dropwise. Finally, Pd(PPhs)s (20 mol%) was
added and reaction mixture heated to 75 ‘C for 60 minutes under Ar atmosphere.
After completion of the reaction, the solvent was removed by vacuum distillation.

The crude product was dissolved in CHCl; (5 mL) and purified on a silica column.

2,3,7,8,12,13,17,18-octaphenylethynyl-5,10,15-triphenylcorrolatocopper(II)
cation radical (5)

Purification was carried out using a CHCls/hexane mixture (1:1, v/v) as eluent. The
desired product was recrystallized using a CHCls/hexane mixture (1:5, v/v). The

yield was 65%.



IH NMR in CDCIl; (500 MHz): & (ppm) 7.85 (d, 3H, J = 7.15 Hz, meso-phenyl-H),
7.78 (d, 1H, J = 7.15 Hz, meso-phenyl-H), 7.56 (d, 2H, J = 7.45 Hz, meso-phenyl-H),
7.48 (d, 5H, J = 7.30 Hz, meso-phenyl-H), 7.43 (d, 2H, meso-phenyl-H), 7.40 (d,
4H, B-pyrrole PE-H and meso-phenyl-H), 7.25-7.22 (m, 6H, B-pyrrole PE-H), 7.21-
7.11 (m, 20H B-pyrrole PE-H), 7.10-7.04 (m, 12H, B-pyrrole PE-H). UV/Vis
(CH2CL): Amax (nm) (¢ x 10° L mol™ cm™) 496 (68.7), 621 (16.9), 732 (4.19).
MALDI/TOF-MS (m/z): found 1388.944 [M+H]", calcd. 1388.39. Anal. calcd. for
Ci01HssN4Cu: C, 87.39; H, 3.99; N, 4.04. Found: C, 87.57; H, 4.06; N, 4.19%.
2,3,7,8,12,13,17,18-octaphenylethynyl-5,10,15-tritolylcorrolatocopper(Il) cation
radical (6)

Purification was carried out using a CHCls/hexane mixture (1:1, v/v) as eluent. The
desired product was recrystallized from a CHCls/hexane mixture (1:5, v/v). The yield
was 72%. 'H NMR in CDCl; (400 MHz): & (ppm) 7.75 (d, 3H, J = 8 Hz, meso-
phenyl-H), 7.67 (d, 2H, J = 8 Hz, meso-phenyl-H), 7.41 (d, 4H, J = 4 Hz, meso-
phenyl-H), 7.28-7.26 (m, 3H, meso-phenyl-H), 7.23 (d, 7H, J = 8 Hz, B-pyrrole PE-
H), 7.23-7.09 (m, 21H, B-pyrrole PE-H), 7.08-7.03 (m, 12H, B-pyrrole PE-H), 2,22
(s, 6H, meso-phenylCHs-H), 2.17 (s, 3H, meso-phenylCH;-H). UV/Vis (CH,Cl,):
Amax (nm) (¢ x 10° L mol™” cm™) 508(74.8), 620(15,3), 729(5.2). MALDI/TOF-MS
(m/z): found 1432.61 [M+2H], caled. 1432.19. Anal. caled. for
C104He1N4CuO*0.5H,0: C, 86.79; H, 4.34; N, 3.89. Found: C, 86.82; H, 4.40; N,

4.30%.
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Figure S1. "H NMR spectrum of CuTPC(PE), 3 in CDCl; at 298 K.
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Figure S9. Front view (left) and side view (right) of two independent molecules (one in red color

and another one is in blue color) of crystal structure of CiTPC(PE); 3.

Figure S10. Crystal packing diagram of corrole CaTPC(PE); 3.

11



Table S1. Crystal structure data of CuTPC(PE), 3.

CuTPC(PE), (3)
Empirical Formula Cs3H;3,CuNy
Formula wt. 787.36
Crystal system Triclinic
Space group P-1
a(A) 16.7756(6)
b(A) 17.1514(5)
c(A) 18.3118(6)
a(°) 117.549(3)
B 109.011(3)
7 () 97.510(3)
Volume (A?) 4160.4(3)
4 4
Deaig (mg/m”) 1.257
L (A) 0.71073
T(CC) 150(2) K
No. of total reflns. 26671
No. of indepnt. reflns. | 15766
R 0.0770
Ry 0.2607
GOOF 0.986
CCDC No 1532011

12
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Figure S11. Variable temperature '"H NMR spectra of CuTPC 1 in C¢Dg showing the aromatic
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Figure S16. EPR spectra of corroles 1-6 at (a) 100 K and (b) 293 K in toluene.
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Figure S17. EPR spectra of corroles 1-6 in toluene at 353 K.
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Figure S20. Cyclic voltammograms of 2, 4 and 6 in CH,Cl; at 20 °C, with 0.1 M TBAP. Scan

rate = 0.1 V/sec.
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Figure S22. Cyclic voltammograms of 2, 4 and 6 in PhCN at 20 °C, with 0.1 M TBAP. Scan rate

=0.1 V/sec.
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Figure S23. Cyclic voltammograms of 1, 3 and 5 in PhCN at 20 °C, with 0.1 M TBAP. Scan rate

=0.1 V/sec.
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Figure S24. Cyclic voltammograms of 2, 4 and 6 in THF at 20 °C, with 0.1 M TBAP. Scan rate

=0.1 V/sec.
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Table S2. Half-wave potential (V vs. SCE) for the investigated copper corroles in CH,Cl, and

PhCN, and THF, scan rate = 0.1V/s at 20°C.

# of Oxidation Reduction
Solvent Macrocycle Cor #
PE 2nd lst lst 2nd Srd 4Ih
CH,Cl, CuTTC 0 2 1.36 0.73 -0.20
2 4 1.28 0.76 -0.07 -1.72 -1.85
8 6 1.42 0.94 0.10 -1.26 -1.69
CuTPC 0 1 1.38 0.75 -0.18
2 3 1.32 0.70 -0.07 -1.67
8 5 1.38 0.97 0.10 -1.24 -1.69*
PhCN CuTTC 0 2 1.37 0.70 -0.21
2 4 1.39 0.78 -0.09 -1.78
8 6 1.47 0.97 0.10 -1.28 -1.71
CuTPC 0 1 1.44 0.76 -0.16
2 3 1.41 0.82 -0.05 -1.75
8 5 1.50 0.99 0.10 -1.26 -1.67
THF CuTTC 0 2 0.80 -0.14 -1.96 -2.57°
2 4 0.86 0.00 -1.67 -1.82 2177
8 6 1.01 0.16 -1.23 -1.67 -1.85
CuTPC 0 1 0.85 -0.10 -1.96 -2.52¢
2 3 0.88 0.03 -1.64 -2.16

*Peak potential.
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Table S3. UV-vis spectral data of Cu corroles in their neutral and electroreduced forms in THF, 0.1 M TBAP.

Corrole A (nm) (e x10* M T em™)
Macrocycle [Cu'(Cor)]’ (neutral) [Cu'(Cor)] (1% Red) [Cu"(Cor)]” (2" Red)
TPC 1 409 (5.1) 542 (0.4) 626 (0.2) 432(6.3) 542 (0.4) 575 (0.7) 608 (1.1) 435 (2.4) 610 (0.7) 697 (0.8)
TTC2 416 (12.3) 542 (0.9) 632 (0.5) 431(6.0) 542 (0.9) 575 (1.4) 609 (2.4) 433 (3.5) 609 (0.8) 697 (0.6)
TPC(PE),3 425 (4.3) 576 (0.8) 665 (0.6) 448(3.6) 465 (3.7) 615 (1.5) 646 (2.0) 370 (2.3) 467 (2.0) 545 (0.9) 611(0.9) 748 (1.9)
TTC(PE), 4 430(6.2) 576 (0.8) 665 (0.6) 446(5.2) 463 (4.8) 615 (2.4) 646 (3.0) 366 (3.0) 450 (3.2) 547 (1.20) 611(1.7) 748 (2.6)
TPC(PE)s 5 496 (3.3) 626 (1.0) 738 (0.4) 534(3.0) 632 (1.1) 679 (1.0) 729 (0.8) 528 (1.7) 849 (0.8)
TTC(PE); 6 507(5.6) 623 (1.3) 740 (0.5) 527(5.2) 623 (1.3) 679 (1.7) 727(1.2) 548 (2.2) 837(1.4)
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Figure S27. UV-vis spectral changes of CuTTC 2, CuTTC(PE), 4 and CuTTC(PE)s 6 upon

oxidation with (tris(p-bormophenylammoniumyl)exachloroantimonate) in CH,Cl, at 298K. The

single oxidized species are shown in red and represented as [2]", [4]" and [6]".
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Figure S28. UV-vis spectral changes of corrole CuTPC 1, CuTPC(PE), 3 and CuTPC(PE)s 5§
while addition of one electron oxidant (tris(p-bormophenyl)ammoniumyl hexachloroantimonate)

in CH,Cl, (left) and one electron reductant (KO,) in CH3CN (right) at 298 K.
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