Electronic Supplementary Material (ESI) for Dalton Transactions. This journal is © The Royal Society of Chemistry 2017

Supporting Information

Synthesis of Divalent Ytterbium Terphenylamide and Catalytic Application for

Regioselective Hydrosilylation of Alkenes

Yinghua Shi,^a Jianfeng Li,^{*a} Chunming Cui^{*a,b}

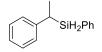
^aState Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071;
^bCollaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, People's Republic of China
E-mail: lijf@nankai.edu.cn, cmcui@nankai.edu.cn.
Homepage: http://cui.nankai.edu.cn

Table of Contents

X-Ray Crystallography	S3
Procedures and Products of Hydrosilylation Reactions	S5
References	S21
The NMR, IR and GC-MS Spectra of Products	S22

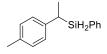
X-ray Crystallography

Empirical formula	$C_{63}H_{88}N_4Si_4Yb_2$
Formula weight	1359.81
temperature	113(2)
wavelength	0.71075Å
Crystal system, space group	Monoclinic, P 21/n
Unit cell dimensions	a=14.368(3) $ m \AA$ alpha= 90.00 $^{\circ}$
	b=23.236(4)Å beta = 106.498(3) $^{\circ}$
	c=19.877(4) gamma=90.00 $^{\circ}$
volume	6363(2) Å ³
Z, Calculated density	4, 1.420 Mg/m ³
F(000)	2760
Absorption coefficient	3.036 mm ⁻¹
Crystal size	0.32×0.24×0.20 mm
Theta range for data collection	2.66 to 27.88 deg
Limiting indices	-14<=h<=13, -15<=K<=13, -18<=l<=18
Reflections collected / unique	14713 / 7126 [R(int) = 0.0304]
Completeness to theta = 27.88	97.1 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.4736 and 0.3979
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	7126 / 92 / 357
Goodness-of-fit on F^2	1.075
Final R indices [I>2sigma(I)]	R1 = 0.0243, wR2 = 0.0596
R indices (all data)	R1 = 0.0264, wR2 = 0.0603
Largest diff. Peak and hole	0.991 and -1.374e.A ⁻³
CCDC number	1545004

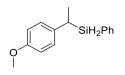

Table S1. Crystallographic detail for 1*C₇H₈.

Empirical formula	C61 H66 N2O2 Si Yb
Formula weight	1060.29
Temperature	113(2)К
Wavelength	0.71075Å
Crystal system, space group	Triclinic, P-1
Unit cell dimensions	a=17.100(2)Å α =71.668(6) deg.
	b=17.5072(17)Å β =85.793(6) deg.
	c=19.438(2)Å γ =71.566(5) deg.
Volume	5238.3(11)Å ³
Z, Calculated density	4,1.344 Mg/m ³
Absorption coefficient	1.852 mm ⁻¹
F(000)	2184
Crystal size	0.26 ×0.24 ×0.22 mm
Them range for data collection	1.26 to 27.88 deg.
Limiting indices	-22<=h<=22, -23<=k<=20, -25<=l<=25
Reflections collected/unique	58425/24765 [R(int)= 0.0409]
Completeness to them=27.88	99/1%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6861 and 0.6445
Refinement method	Full-matrix least-squares on F ²
CCDC number	1545003

Table S2. Crystallographic detail for **2*C₇H₈**.


General Procedures for the Catalytic Hydrosilylation Reactions. In an Ar glove box, a Schlenk tube (10 ml) was charged with catalyst **1** (0.005-0.01 mmol) and toluene (0.2 mL). And then silane (1.0 mmol) and the appropriate alkene or diene (1.0 mmol) were added by microsyringe. The Schlenk tube was quickly removed from the glovebox. The reaction mixture was stirred 4-8 h at 60-90 °C using oil bath, and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent.

Phenyl(1-phenylethyl)silane (4a)¹


The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), Styrene (104 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 60 °C for 4 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (201 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.66 (m, 2H, Ar-*H*), 7.63 – 7.56 (m, 2H, Ar-*H*), 7.50 (m, 4H, Ar-*H*), 7.35 (m, 2H, Ar-*H*), 4.62 (s, 2H, SiH₂), 2.86 (m, 1H, C-*H*), 1.71 (d, ³J_{H-H} = 7.4 Hz, 3H, Me). ¹³C NMR (101 MHz, CDCl₃): δ 144.7, 135.9, 131.6, 130.0, 128.6, 128.1, 127.4, 125.3 (Ar-*C*), 25.6 (Me), 16.6 (*C*HSi). ²⁹Si NMR (79 MHz, CDCl₃): δ -20.6 (SiH₂). GC-MS (EI): Calcd for C₁₄H₁₆Si: 212.10, found: 212.21. This compound was known.

Phenyl(1-(p-tolyl)ethyl)silane (4b)²

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Methylstyrene (118 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 60 °C for 4 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (215 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.53 (m, 2H, Ar-H), 7.44 (m, 2H, Ar-H), 7.41–7.36 (m, 2H, Ar-H), 7.16–7.11 (m, 3H, Ar-H), 4.47 (s, 2H, SiH₂), 2.68 (m, 1H, CH), 2.40 (s, 3H, Ar-Me), 1.55 (d, ³J_{H-H} = 7.4 Hz, 3H, CH-Me). ¹³C NMR (101 MHz, CDCl₃): δ 141.7, 136.0, 130.0, 129.4, 128.1, 127.3 (Ar-*C*), 25.1 (CH-Me), 21.2 (Ar-Me), 16.9 (CHSi). ²⁹Si NMR (79 MHz, CDCl₃): δ -20.8 (SiH₂). GC-MS (EI): Calcd for C₁₅H₁₈Si: 226.12, found: 226.24. This compound was known.

(1-(4-Methoxyphenyl)ethyl)(phenyl)silane (4c)³

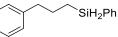
The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Methoxystyrene (134 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 60 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (230 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.60 (m, 2H, Ar-*H*), 7.52 (m, 3H, Ar-*H*), 7.21 (m, 2H, Ar-*H*), 7.00 (m, 2H, Ar-*H*), 4.54 (s, 2H, SiH₂), 3.92 (s, 3H, ArO-Me), 2.75 (m, 1H, CH), 1.63 (d, ³J_{H-H} = 7.3 Hz, 3H, Me). ¹³C NMR (101 MHz, CDCl₃): δ 158.1, 137.3, 136.6, 132.4, 130.6, 129.0, 128.9, 128.8 (Ar-*C*), 56.0 (ArO-Me), 25.1 (Me), 17.7 (*C*HSi). ²⁹Si NMR (79 MHz, CDCl₃): δ -21.2 (SiH₂). GC-MS (EI): Calcd for C₁₅H₁₈OSi: 242.11, found: 242.23. This compound was known.

$PhCH_{3}C(SiH_{2}Ph)CH_{3}(4d)^{3}$

SiH₂Ph

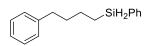
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 2-Phenyl-1-propene (118 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (208 mg, 92 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.53–7.05 (m, 10H, Ar-*H*), 4.44 (s, 2H, SiH₂), 1.36 (s, 6H, Me). ¹³C NMR (101 MHz, C₆D₆): δ 136.2, 135.9, 129.9, 128.4, 127.9, 126.3, 125.7, 125.2 (Ar-*C*), 26.5 (Me), 25.3 (Me₂-*C*). ²⁹Si NMR (79 MHz, C₆D₆): δ -13.3 (SiH₂). GC-MS (EI): Calcd for C₁₅H₁₈Si: 226.12, found: 226.17. This compound was known.

Ph₂C(CH₃)SiH₂Ph (4e)³


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,1-Diphenylethylene (180 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (268 mg, 93 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.61–7.39 (m, 15H, Ar-*H*), 5.04 (s, 2H, SiH₂), 2.09 (s, 3H, Me). ¹³C

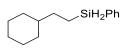
NMR (101 MHz, CDCl₃): δ 146.3, 135.2, 134.6, 129.8, 128.7, 127.2, 126.5, 124.5 (Ar-*C*), 36.5 (Ph₂-*C*), 24.5 (Me). ²⁹Si NMR (79 MHz, C₆D₆): δ -19.3 (SiH₂). GC-MS (EI): Calcd for C₂₀H₂₀Si: 228.13, found: 228.20. This compound was known.

[1-(2-Napthyl)-l-ethyl](phenyl)silane (4f)³

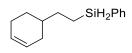

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 2-Vinylnaphthalene (154 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (250 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 8.09–8.01 (m, 3H, Ar-*H*), 7.85 (s, 1H, Ar-*H*), 7.76–7.71 (m, 3H, Ar-*H*), 7.67 (m, 2H, Ar-*H*), 7.62–7.55 (m, 3H, Ar-*H*), 4.78 (m, 2H, SiH₂), 3.16–3.04 (m, 1H, C*H*), 1.89 (d, ³*J*_{H-H} = 7.4 Hz, 3H, Me). ¹³C NMR (101 MHz, CDCl₃): δ 141.0, 134.5, 132.7, 130.5, 130.1, 128.7, 126.8, 126.7, 126.5, 126.2, 125.5, 124.8, 123.7, 123.4 (Ar-*C*), 24.5 (Me), 15.3 (CH). ²⁹Si NMR (79 MHz, C₆D₆): δ -21.4 (SiH₂). GC-MS (EI): Calcd for C₁₈H₁₈Si: 262.12, found: 262.18. This compound was known.

phenyl(3-phenylpropyl)silane (4g)³

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), Allylbenzene (118 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (204 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.46 (m, 2H, Ar-*H*), 7.13 (m, 5H, Ar-*H*), 7.08–7.04 (m, 1H, Ar-*H*), 6.99 (m, 2H, Ar-*H*), 4.43 (m, 2H, SiH₂), 2.46 (m, 2H, Ar-*CH*₂), 1.65 (m, 2H, CH₂), 0.79 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 141.9, 135.2, 132.2, 129.5, 128.5, 128.3, 128.0, 125.8 (Ar-*C*), 39.0 (Ar-*C*H₂), 27.0 (*C*H₂), 9.7 (*C*H₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -31.0 (SiH₂). GC-MS (EI): Calcd for C₁₅H₁₈Si: 226.12, found: 226.20.


Phenyl(4-phenylbutyl)silane (4h)⁴

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Phenyl-1-butene (132 mg, 1.0 mmol) and $PhSiH_3$ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the


reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (215 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, C_6D_6): δ 7.50–7.45 (m, 2H, Ar-*H*), 7.16 (m, 2H, Ar-*H*), 7.14 (m, 3H, Ar-*H*), 7.07 (m, 1H, Ar-*H*), 7.02 (m, 2H, Ar-*H*), 4.50–4.39 (m, 2H, SiH₂), 2.43–2.37 (m, 2H, Ar-*CH*₂), 1.58–1.48 (m, 2H, *CH*₂), 1.44–1.30 (m, 2H, *CH*₂), 0.78 (m, 2H, *CH*₂Si). ¹³C NMR (101 MHz, C_6D_6): δ 142.3, 135.2, 132.3, 129.5, 128.4, 128.3, 128.0, 125.7 (Ar-*C*), 35.6 (Ar-*C*H₂), 34.6 (*C*H₂), 24.7 (*C*H₂), 9.9 (*C*H₂Si). ²⁹Si NMR (79 MHz, C_6D_6): δ -31.1 (SiH₂). GC-MS (EI): Calcd for $C_{16}H_{20}$ Si: 240.13, found: 240.22.

(2-Cyclohexylethyl)(phenyl)silane (4i)⁵

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), Vinylcyclohexane (110 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (160 mg, 70 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (m, 2H, Ar-*H*), 7.48 (m, 3H, Ar-*H*), 4.44 (s, 2H, SiH₂), 1.83 (m, 6H, CH₂, CH), 1.46–1.31 (m, 5H, CH₂), 1.05–0.85 (m, 4H, CH₂, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 135.9, 135.4, 129.6, 128.3 (Ar-*C*), 40.5 (CH), 33.1, 32.7, 27.0, 26.6 (CH₂), 7.3 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -29.9 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₂Si: 218.15, found: 218.27.

4-[2-(Phenylsilyl)ethyl]cyclohex-1-ene (4j)⁶

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-Vinylcyclohexene (108 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (195 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.73 (m, 2H, Ar-*H*), 7.51 (m, 3H, Ar-*H*), 5.82 (s, 2H, *CH*=*CH*), 4.48 (s, 2H, SiH₂), 2.19 (s, 2H, *CH*₂), 1.88–1.76 (m, 2H, *CH*₂), 1.59–1.35 (m, 3H, *CH*₂), 1.12 (s, 2H, *CH*₂), 0.92 (m, 2H, *CH*₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 135.4, 132.7, 129.7, 128.1 (Ar-*C*), 127.2, 126.7 (*C*H=*C*H), 36.3 (*C*H), 32.0, 31.6, 28.6, 25.5 (*C*H₂), 7.4 (*C*H₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -29.9 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₀Si: 216.13, found: 216.21.

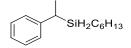
(1-Hexyl)(phenyl)silane (4k)³

n-C₄H₉SiH₂Ph

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Hexene (84 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (145 mg, 75 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.71 (m, 2H, Ar-*H*), 7.49 (m, 3H, Ar-*H*), 4.46 (s, 2H, SiH₂), 1.4–1.08 (m, 8H, CH₂), 0.9–0.75 (m, 5H, Me, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 134.6, 134.2, 128.4, 126.9 (Ar-C), 31.5, 30.5, 24.0, 21.5 (CH₂), 13.1 (Me), 9.0 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -31.3 (SiH₂). GC-MS (EI): Calcd for C₁₂H₂₀Si: 192.13, found: 192.24.

(1-Octyl)(phenyl)silane (4l)⁷

n-C₄H₉ SiH₂Ph


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Octene (112 mg, 1.0 mmol) and PhSiH₃ (108 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (175 mg, 80 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (m, 2H, Ar-*H*), 7.44 (m, 3H, Ar-*H*), 4.45 (s, 2H, SiH₂), 1.48–1.35 (m, 12H, CH₂), 1.08–0.97 (m, 5H, Me, SiH₂). ¹³C NMR (101 MHz, CDCl₃): δ 134.6, 134.1, 128.4, 126.9 (Ar-*C*), 32.0, 30.9, 28.3, 24.5, 24.1, 21.6 (CH₂), 13.1 (Me), 9.0 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -30.6 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₄Si: 220.16, found: 220.26.

1,6-bis(phenylsilyl)hexane (4m)⁸

PhH₂Si SiH₂Ph

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,5-Hexadiene (82 mg, 1.0 mmol) and PhSiH₃ (216 mg, 2.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (210 mg, 70 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.53 (m, 4H, Ar-*H*), 7.21 (m, 6H, Ar-*H*), 4.50 (s, 4H, SiH₂), 1.39 (m, 4H, CH₂), 1.25 (m, 4H, CH₂), 0.84 (s, 4H, SiH₂). ¹³C NMR (101 MHz, C₆D₆): δ 135.9, 135.4, 129.7, 128.2 (Ar-*C*), 32.6 (CH₂), 25.2 (CH₂), 10.3 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -31.0 (SiH₂). GC-MS (EI): Calcd for C₁₈H₂₆Si: 298.16, found: 298.18.

Hexyl(1-phenylethyl)silane (5a)

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), Styrene (104 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 60 °C for 4 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (213 mg, 97 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.14 (m, 2H, Ar-*H*), 7.07–6.97 (m, 3H, Ar-*H*), 3.95–3.82 (m, 2H, SiH₂), 2.31–2.20 (m, 1H, CH), 1.35 (d, ³J_{H-H} = 7.5 Hz, 3H, CH-Me), 1.27–1.11 (m, 8H, CH₂), 0.86 (t, ³J_{H-H} = 6.9 Hz, 3H, CH₂-Me), 0.52 (s, 2H, CH₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 145.4, 128.6, 127.0, 125.1 (Ar-*C*), 32.8 (CH₂), 31.7 (CH₂), 25.4 (CH₂), 24.6 (CH-Me), 22.8 (CH₂), 16.9(CHSi), 14.2 (CH₂-Me), 8.4 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -18.5 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₄Si: 220.16, found: 220.25.

Hexyl(1-(p-tolyl)ethyl)silane (5b)

SiH₂C₆H₁₃

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Methylstyrene (118 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 60 °C for 4 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (227 mg, 97 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 6.97 (m, 4H, Ar-*H*), 3.88 (m, 2H, Ar-*H*), 2.32–2.22 (m, 1H, C*H*), 2.15 (s, 3H, Ar-Me), 1.36 (t, ³J_{H-H} = 9.5 Hz, 3H, CH-Me), 1.30–1.12 (m, 8H, CH₂), 0.86 (t, ³J_{H-H} = 6.9 Hz, 3H, CH₂-Me), 0.54 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 142.2, 134.1, 129.3, 126.9 (Ar-*C*), 32.8 (CH₂), 31.7 (CH₂), 25.6 (CH₂), 24.1 (CH-Me), 22.8 (CH₂), 20.8 (Ar-Me), 17.1 (CHSi), 14.2 (CH₂-Me), 8.4 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -18.7 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₆Si: 234.18, found: 234.32.

(1-(4-Methoxyphenyl)ethyl)(hexyl)silane (5c)

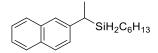
SiH₂C₆H₁₃

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Methoxystyrene (134 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 60 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (237 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 6.96 (m, 2H, Ar-*H*), 6.74 (m, 2H, Ar-*H*), 3.93–3.81 (m, 2H, Si*H*₂), 3.38 (s, 3H, ArO-Me), 2.24 (m, 1H, CH), 1.35 (d, ³J_{H-H} = 7.5 Hz, 3H, CH-Me), 1.28–1.10 (m, 8H, C*H*₂), 0.84 (t, ³J_{H-H} = 6.6 Hz, 3H, CH₂-Me), 0.55 (d, ³J_{H-H} = 2.4 Hz, 2H, C*H*₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 157.7, 137.1, 127.8, 114.2 (Ar-*C*), 54.6 (ArO-Me), 32.8 (CH₂), 31.7 (CH₂), 25.4 (CH₂), 23.5 (CH-Me), 22.8 (CH₂), 17.3 (CHSi), 14.2 (CH₂-Me), 8.4 (CH₂Si) . ²⁹Si NMR (79 MHz, C₆D₆): δ -19.0 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₆OSi: 250.18, found: 250.37.

$PhCH_{3}C(SiH_{2}C_{6}H_{13})CH_{3}$ (5d)

∑ SiH₂C₆H₁₃

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 2-Phenyl-1-propene (118 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (215 mg, 92 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.21 (m, 2H, Ar-*H*), 7.16 (m, 2H, Ar-*H*), 7.00 (m, 1H, Ar-*H*), 3.86 (m, 2H, SiH₂), 1.38 (s, 6H, Me), 1.22–1.09 (m, 8H, CH₂), 0.84 (m, 3H, CH₂-Me), 0.49 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 148.3, 128.4, 125.8, 124.9 (Ar-*C*), 32.8 (CH₂), 31.7 (CH₂), 25.9 (CH₂), 25.4 (Me), 25.3 (Me₂-*C*), 22.8 (CH₂), 14.2 (CH₂-Me), 8.1 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -10.21 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₆Si: 234.18, found: 234.27.

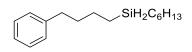

Ph₂C(CH₃)SiH₂C₆H₁₃ (5e)

Ph Ph SiH₂C₆H₁₃

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,1-Diphenylethylene (180 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (276 mg, 93 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.28–7.19 (m, 4H, Ar-*H*), 7.14–7.09 (m, 4H, Ar-*H*), 7.01 (m, 2H, Ar-*H*), 4.24 (m, 2H, SiH₂), 1.70 (s, 3H, Ph₂C-Me), 1.24–1.08 (m, 8H, CH₂), 0.89–0.79 (m, 3H, CH₂-Me), 0.54

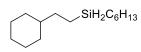
(d, ${}^{3}J_{H-H} = 8.4$ Hz, 2H, $CH_{2}Si$). ${}^{13}C$ NMR (101 MHz, $C_{6}D_{6}$): δ 148.30, 128.52, 128.17, 125.61 (Ar-*C*), 37.2 (Ph₂-*C*), 32.7 (*C*H₂), 31.7 (*C*H₂), 26.3 (*C*H₂), 25.5 (Ph₂C-Me), 22.8 (*C*H₂), 14.3 (CH₂-Me), 8.6 (*C*H₂Si). ${}^{29}Si$ NMR (79 MHz, $C_{6}D_{6}$): δ -15.3 (SiH₂). GC-MS (EI): Calcd for $C_{20}H_{28}Si$: 296.20, found: 296.24.

[1-(2-Napthyl)-l-ethyl](hexyl)silane (5f)


The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 2-Vinylnaphthalene (154 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 6 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (251 mg, 93 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.70 (m, 3H, Ar-*H*), 7.51 (m, 1H, Ar-*H*), 7.39–7.33 (m, 2H, Ar-*H*), 7.25 (m, 1H, Ar-*H*), 3.81–3.71 (m, 2H, SiH₂), 2.59–2.48 (m, 1H, CH), 1.50 (m, 3H, CH-Me), 1.27–1.16 (m, 8H, CH₂), 0.83 (t, ³J_{H+H} = 6.9 Hz, 3H, CH₂-Me), 0.60 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 142.08, 132.78, 130.45, 126.75, 126.50, 126.20, 125.41, 124.78, 123.66, 123.03 (Ar-*C*), 31.4 (CH₂), 30.4 (CH₂), 24.0 (CH₂), 23.6 (CH-Me), 21.5 (CH₂), 15.7 (CH), 13.0 (CH₂-Me), 7.2 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -21.4 (SiH₂). GC-MS (EI): Calcd for C₁₈H₂₆Si: 270.18, found: 270.24.

Hexyl(3-phenylpropyl)silane (5g)

SiH₂C₆H₁₃


The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), Allylbenzene (118 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (223 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.14 (m, 2H, Ar-*H*), 7.04 (m, 3H, Ar-*H*), 3.90–3.78 (m, 2H, Si*H*₂), 2.51 (m, 2H, Ar-C*H*₂), 1.63 (m, 2H, ArCH₂-C*H*₂), 1.26 (m, 8H, C*H*₂), 0.88 (t, ³*J*_{H-H} = 6.9 Hz, 3H, CH₂-Me), 0.65– 0.53 (m, 4H, C*H*₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 142.1, 128.6, 128.4, 125.9 (Ar-C), 39.3 (Ar-CH₂), 32.8 (CH₂), 31.8 (CH₂), 27.7 (CH₂), 25.6 (CH₂), 22.8 (CH₂), 14.2 (CH₂-Me), 9.3 (CH₂Si), 9.0 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -28.8 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₆Si: 234.18, found: 234.28.

Hexyl(4-phenylbutyl)silane (5h)

The reaction was carried out according to general method by using catalyst A (6.4 mg, 0.005 mmol), 4-Phenyl-1-butene (132 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (236 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, C₆D₆): δ 7.18–7.10 (m, 2H, Ar-*H*), 7.04 (m, 3H, Ar-*H*), 3.86–3.78 (m, 2H, Si*H*₂), 2.54–2.39 (m, 2H, Ar-*CH*₂), 1.63–1.50 (m, 2H, *CH*₂), 1.32 (m, 10H, *CH*₂), 0.87 (m, 3H, *CH*₂-Me), 0.61 (d, ³*J*_{H-H} = 7.6 Hz, 4H, *CH*₂Si). ¹³C NMR (101 MHz, C₆D₆): δ 142.4, 128.5, 128.3, 125.8 (Ar-*C*), 35.8 (*CH*₂), 34.9 (*CH*₂), 32.9 (*CH*₂), 31.8 (*CH*₂), 25.7 (*CH*₂), 25.3 (*CH*₂), 22.8 (*CH*₂), 14.2 (*CH*₂-Me), 9.3 (*CH*₂Si), 9.2 (*CH*₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -28.9 (SiH₂). GC-MS (EI): Calcd for C₁₆H₂₈Si: 248.20, found: 248.29.

(2-Cyclohexylethyl)(hexyl)silane (5i)

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), Vinylcyclohexane (110 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (208 mg, 92 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.72 (s, 2H, SiH₂), 1.77 (m, 5H, CH₂, CH), 1.32 (m, 14H, CH₂), 0.96 (m, 5H, CH₂, CH₂-Me), 0.74 (m, 4H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 40.4 (CH), 33.1 (CH₂), 33.0 (CH₂), 32.7 (CH₂), 31.6 (CH₂), 26.8 (CH₂), 26.5 (CH₂), 25.5 (CH₂), 22.7 (CH₂), 14.1 (CH₂-Me) , 9.2 (CH₂Si), 6.3 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -27.8 (SiH₂). GC-MS (EI): Calcd for C₁₄H₃₀Si: 226.21, found: 226.29.

4-[2-(Hexylsilyl)ethyl]cyclohex-1-ene (5j)

SiH₂C₆H₁₃

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-Vinylcyclohexene (108 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (213 mg, 95 %) as a

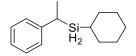
colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.70 (s, 2H, CH=CH), 3.72 (s, 2H, SiH₂), 2.25–2.02 (m, 4H, CH₂), 1.74 (m, 1H, CH), 1.52–1.26 (m, 12H, CH₂), 0.94 (s, 3H, CH₂-Me), 0.74 (s, 4H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 127.0, 126.5 (CH=CH), 36.2 (CH), 32.7 (CH₂), 32.3 (CH₂), 31.6 (CH₂), 28.5 (CH₂), 25.5 (CH₂), 25.3 (CH₂), 22.6 (CH₂), 14.1 (Me), 9.2 (CH₂Si), 6.3 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -27.8 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₈Si: 224.20, found: 224.28.

(1-Hexyl)(hexyl)silane (5k)

n-C₄H₉ SiH₂C₆H₁₃

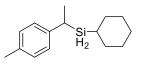
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Hexene (84 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (191 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 2H, SiH₂), 1.38 (m, 16H, CH₂), 0.95 (m, 6H, CH₂-Me), 0.73 (m, 4H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 32.7 (CH₂), 31.6 (CH₂), 25.5 (CH₂), 22.6 (CH₂), 14.1 (Me), 9.20 (CH₂Si). ²⁹Si NMR (79 MHz, C₆D₆): δ -28.9 (SiH₂). GC-MS (EI): Calcd for C₁₂H₂₈Si: 200.20, found: 200.29.

(1-Octyl)(hexyl)silane (5l)


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Octene (112 mg, 1.0 mmol) and hexylsilane (116 mg, 1.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (217 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.70 (s, 2H, SiH₂), 1.32 (m, 20H, CH₂), 0.93 (m, 6H, CH₂-Me), 0.72 (m, 4H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 33.0 (CH₂), 32.6 (CH₂), 31.9 (CH₂), 31.6 (CH₂), 29.3 (CH₂), 29.3 (CH₂), 25.5 (CH₂), 22.7 (CH₂), 22.6 (CH₂), 14.1 (CH₂-Me), 9.2 (CH₂Si) . ²⁹Si NMR (79 MHz, C₆D₆): δ -28.9 (SiH₂). GC-MS (EI): Calcd for C₁₄H₃₂Si: 228.23, found: 228.33.

1,6-Bis(hexylsilyl)hexane (5m)

C₆H₁₃H₂Si SiH₂C₆H₁₃


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,5-Hexadiene (82 mg, 1.0 mmol) and hexylsilane (232 mg, 2.0 mmol) at 70 °C for 8 h and then the reaction mixture was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (285 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.71 (s, 4H, SiH₂), 1.40 (m, 24H, CH₂), 0.94 (s, 6H, CH₂-Me), 0.73 (s, 8H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 32.7 (CH₂), 32.6 (CH₂), 31.6 (CH₂), 25.5 (CH₂), 25.4 (CH₂), 22.6 (CH₂), 14.1 (CH₂-Me), 9.2 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -28.6 (SiH₂). GC-MS (EI): Calcd for C₁₈H₄₂Si: 314.28, found: 314.37.

Cyclohexyl(1-phenylethyl)silane (6a)

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), styrene (104 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 70 °C for 5 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (207 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, 2H, Ar-*H*), 7.30–7.21 (m, 3H, Ar-*H*), 3.77 (m, 1H, SiH*H*), 3.72 (m, 1H, Si*H*H), 2.63–2.53 (m, 1H, Ar-*CH*), 1.86–1.72 (m, 5H, *CH*₂), 1.63–1.54 (m, 3H, CH-Me), 1.40–1.27 (m, 5H, *CH*₂), 1.04–0.92 (m, 1H, *CH*Si). ¹³C NMR (101 MHz, CDCl₃): δ 145.8, 128.5, 127.0, 124.9 (Ar-*C*), 29.3 (*C*H₂), 27.8 (*C*H₂), 26.7 (*C*H₂), 23.7 (CH₂-Me), 20.9 (*C*HSi), 17.5 (Ar-*C*H). ²⁹Si NMR (79 MHz, CDCl₃): δ -11.4 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₂Si: 218.15, found: 218.24.

Cyclohexyl(1-(p-tolyl)ethyl)silane (6b)

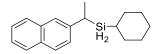
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-methylstyrene (118 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 70 °C for 5 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (220 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.34–7.11 (m, 4H, Ar-*H*), 3.78 (m, 2H, SiH₂), 2.65–2.54 (m, 1H, Ar-*CH*), 2.48 (s, 3H, Ar-Me), 1.84 (s, 5H, *CH*₂), 1.60 (d, ³J_{H-H} = 7.3 Hz, CH-Me), 1.38 (s, 5H, *CH*₂), 1.03 (s, 1H, CHSi). ¹³C NMR (101 MHz, CDCl₃): δ 142.7, 134.2, 129.2, 126.9 (Ar-*C*), 29.3 (*C*H₂), 27.8 (*C*H₂), 26.8 (*C*H₂),

23.1 (Ar-Me), 21.1 (Me), 21.0 (*C*HSi), 17.7 (Ar-*C*H). ²⁹Si NMR (79 MHz, CDCl₃): δ -11.5 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₄Si: 232.16, found: 232.22.

(1-(4-Methoxyphenyl)ethyl)(cyclohexyl)silane (6c)

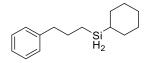
Si-

The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-methoxystyrene (134 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 80 °C for 6 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (235 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 6.98–6.90 (m, 2H, Ar-*H*), 6.75–6.67 (m, 2H, Ar-*H*), 3.64 (s, 3H, ArO-Me), 3.52 (m, 1H, SiHH), 3.46 (m, 1H, SiHH), 2.27 (m, 1H, ArCH), 1.63–1.50 (m, 5H, CH₂), 1.35–1.26 (m, 3H, CH-Me), 1.14–1.01 (m, 5H, CH₂), 0.75 (m, 1H, CHSi). ¹³C NMR (101 MHz, CDCl₃): δ 156.0, 136.5, 126.7, 112.8 (Ar-*C*), 54.04 (ArO-Me), 28.10 (CH₂), 26.6 (CH₂), 25.6 (CH₂), 21.4 (Me), 19.8 (CHSi), 16.7 (Ar-CH). ²⁹Si NMR (79 MHz, CDCl₃): δ -12.0 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₄OSi: 248.16, found: 248.22.


$PhCH_{3}C(SiH_{2}C_{6}H_{11})CH_{3}$ (6d)

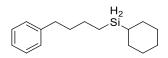
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 2-Phenyl-1-propene (118 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (210 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.51–7.44 (m, 4H, Ar-*H*), 7.34–7.27 (m, 1H, Ar-*H*), 3.84 (m, 2H, Si*H*₂), 1.80 (m, 3H, Me), 1.74–1.63 (m, 8H, C*H*₂, Me), 1.32 (m, 5H, C*H*₂), 1.06–0.97 (m, 1H, CHSi). ¹³C NMR (101 MHz, CDCl₃): δ 147.4, 127.0, 124.7, 123.6 (Ar-*C*), 28.5 (*C*H₂), 26.5 (*C*H₂), 25.5 (*C*H₂), 25.3 (Me), 24.8 (Me₂-*C*), 19.9 (CHSi). ²⁹Si NMR (79 MHz, CDCl₃): δ -3.31 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₄Si: 232.16, found: 232.24.

$Ph_2C(CH_3)SiH_2C_6H_{11}$ (6e)


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,1-Diphenylethylene(180 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (265 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.52 (m, 8H, Ar-*H*), 7.41 (m, 2H, Ar-*H*), 4.30 (m, 2H, SiH₂), 2.09 (s, 3H, Me), 1.88–1.75 (m, 5H, CH₂), 1.45 (m, 5H, CH₂), 1.11 (s, 1H, CHSi). ¹³C NMR (101 MHz, CDCl₃) δ 146.9, 127.1, 126.8, 124.2 (Ar-*C*), 43.6 (Ph₂*C*), 36.1 (CH₂), 28.7 (CH₂), 26.5 (CH₂), 25.2 (Me), 20.0 (CHSi). ²⁹Si NMR (79 MHz, CDCl₃): δ -7.93 (SiH₂). GC-MS (EI): Calcd for C₂₀H₂₆Si: 294.18, found: 294.24.

[1-(2-Napthyl)-I-ethyl](cyclohexyl)silane (6f)

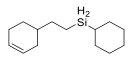
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 2-Vinylnaphthalene (154 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (241 mg, 90 %) as a colorless oil.¹H NMR (400 MHz, CDCl₃): δ 7.93–7.87 (m, 3H, Ar-*H*), 7.71 (m, 1H, Ar-*H*), 7.57 (m, 2H, Ar-*H*), 7.45 (m, 1H, Ar-*H*), 3.88–3.76 (m, 2H, SiH₂), 2.76 (m, 1H, CH), 1.91–1.76 (m, 5H, CH₂), 1.70 (m, 3H, Me), 1.43–1.36 (m, 5H, CH₂), 1.04 (s, 1H, CHSi). ¹³C NMR (101 MHz, CDCl₃): δ 142.4, 132.8, 130.4, 126.7, 126.5, 126.2, 125.5, 124.8, 123.7, 123.2 (Ar-C), 28.12 (CH₂), 26.51 (CH₂), 25.5 (CH₂), 22.8 (Me), 19.8 (CHSi), 16.36 (Ar-CH). ²⁹Si NMR (79 MHz, CDCl₃): δ -11.6 (SiH₂). GC-MS (EI): Calcd for C₁₈H₂₄Si: 268.16, found: 268.24.


Cyclohexyl(3-phenylpropyl)silane (5g)

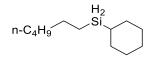
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), Allylbenzene (118 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (210 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.36 (m, 2H, Ar-*H*), 7.30–7.21 (m, 3H, Ar-*H*), 3.63 (s, 2H, SiH₂), 2.73 (m, 2H, CH₂), 1.80 (m, 7H, CH₂), 1.29 (m, 5H, CH₂), 1.00–0.93 (m, 1H, CHSi), 0.80 (s, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 142.4, 128.6, 128.3, 125.7 (Ar-*C*), 39.2 (Ar-CH₂), 29.3 (CH₂), 27.8 (CH₂), 27.7

(CH₂), 26.7 (CH₂), 21.2 (CHSi), 7.62 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -22.3 (SiH₂). GC-MS (EI): Calcd for C₁₅H₂₄Si: 232.16, found: 232.22.

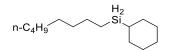
Cyclohexyl(4-phenylbutyl)silane (6h)


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-Phenyl-1-butene (132 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (222 mg, 90 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 7.40 (m, 2H, Ar-*H*), 7.31 (m, 3H, Ar-*H*), 3.69 (s, 2H, SiH₂), 2.75 (s, 2H, Ar-*CH*₂), 1.84 (m, 7H, CH₂), 1.59 (s, 2H, CH₂), 1.38 (s, 5H, CH₂), 1.02 (m, 1H, CHSi), 0.85 (s, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 142.7, 128.5, 128.3, 125.7 (Ar-*C*), 35.8 (Ar-*C*H₂), 34.8 (CH₂), 29.4 (CH₂), 27.8 (CH₂), 26.8 (CH₂), 25.5 (CH₂), 21.3 (CHSi), 7.7 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -22.1 (SiH₂). GC-MS (EI): Calcd for C₁₆H₂₆Si: 246.18, found: 246.24.

(2-Cyclohexylethyl)(cyclohexyl)silane (6i)


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), Vinylcyclohexane (110 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (208 mg, 93 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.56 (s, 2H, SiH₂), 1.75 (s, 10H, CH₂), 1.26 (m, 11H, CH₂, CH), 0.96–0.80 (m, 3H, CH₂, CHSi), 0.69 (s, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 39.4 (CH), 32.2 (CH₂), 31.9 (CH₂), 28.2 (CH₂), 26.7 (CH₂), 25.7 (CH₂), 25.4 (CH₂), 20.2 (CHSi), 3.79 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -21.2 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₈Si: 224.20, found: 224.26

4-[2-(Cyclohexylsilyl)ethyl]cyclohex-1-ene (6j)


The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 4-Vinylcyclohexene(108 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (206 mg, 93 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 5.69 (s, 2H, *CH=CH*), 3.57 (m, 2H, SiH₂), 2.21–2.02 (m, 3H, *CH*₂, *CH*), 1.80 (m, 2H, *CH*₂), 1.77–1.61 (m, 5H, *CH*₂), 1.57–1.48 (m, 1H, *CH*), 1.43–1.36 (m, 2H, *CH*₂), 1.31–1.18 (m, 6H, *CH*₂), 0.94 (m, 1H, *CHS*i), 0.73 (m, 2H, *CH*₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 126.0, 125.5 (*CH=CH*), 35.2 (*CH*), 31.4 (*CH*₂), 30.6 (*CH*₂), 28.2 (*CH*₂), 27.4 (*CH*₂), 26.7 (*CH*₂), 25.7 (*CH*₂), 24.3 (*CH*₂), 20.2 (*CHS*i), 3.8 (*CH*₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -21.3 (SiH₂). GC-MS (EI): Calcd for C₁₄H₂₆Si: 222.18, found: 222.30.

(1-Hexyl)(cyclohexyl)silane (6k)

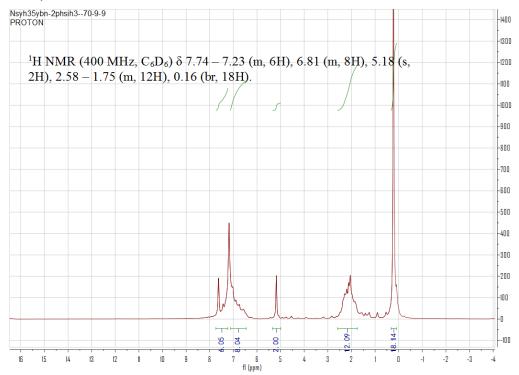
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Hexene (84 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (188 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.57 (m, 2H, SiH₂), 1.77 (m, 5H, CH₂), 1.33 (m, 13H, CH₂), 0.93 (m, 4H, Me, CHSi), 0.70 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 32.7 (CH₂), 31.5 (CH₂), 29.3 (CH₂), 27.8 (CH₂), 26.7 (CH₂), 25.6 (CH₂), 22.6 (CH₂), 21.2 (CHSi), 14.1 (Me), 7.7 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -22.1 (SiH₂). GC-MS (EI): Calcd for C₁₂H₂₆Si: 198.18, found: 198.24.

(1-Octyl)(hexyl)silane (6l)

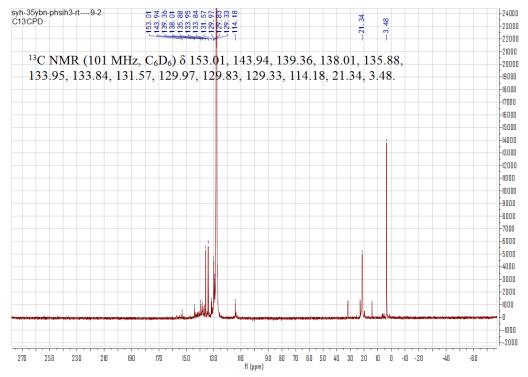
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1-Octene (112 mg, 1.0 mmol) and cyclohexylsilane (114 mg, 1.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (215 mg, 95 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.56 (m, 2H, SiH₂), 1.76 (m, 5H, CH₂), 1.44-1.21 (m, 17H, CH₂), 0.92 (m, 4H, Me, CHSi), 0.74-0.66 (m, 2H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 33.0 (CH₂), 31.9 (CH₂), 29.3

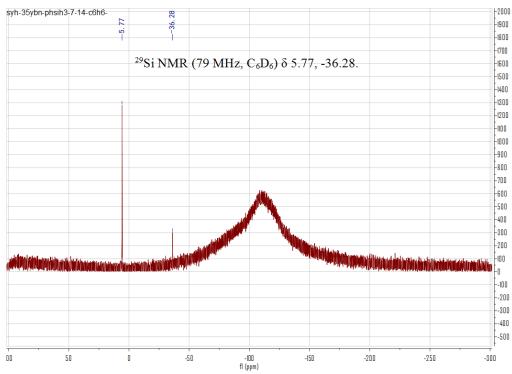
 (CH_2) , 29.2 (CH_2) , 27.7 (CH_2) , 26.7 (CH_2) , 25.6 (CH_2) , 22.7 (CH_2) , 21.2 (CHSi), 14.1 (Me), 7.7 (CH_2Si) . ²⁹Si NMR (79 MHz, CDCl₃): δ -22.1 (SiH_2) . GC-MS (EI): Calcd for C₁₄H₃₀Si: 226.21, found: 226.28.

1,6-Bis(cyclohexylsilyl)hexane (6m)

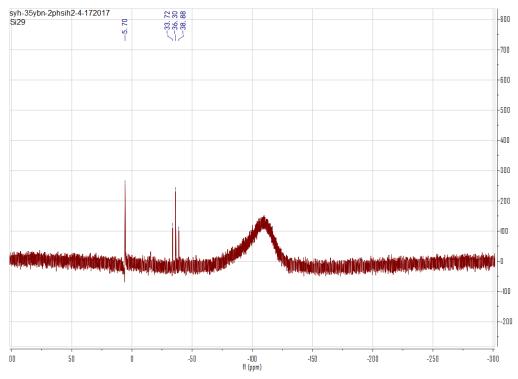

Sí H₂

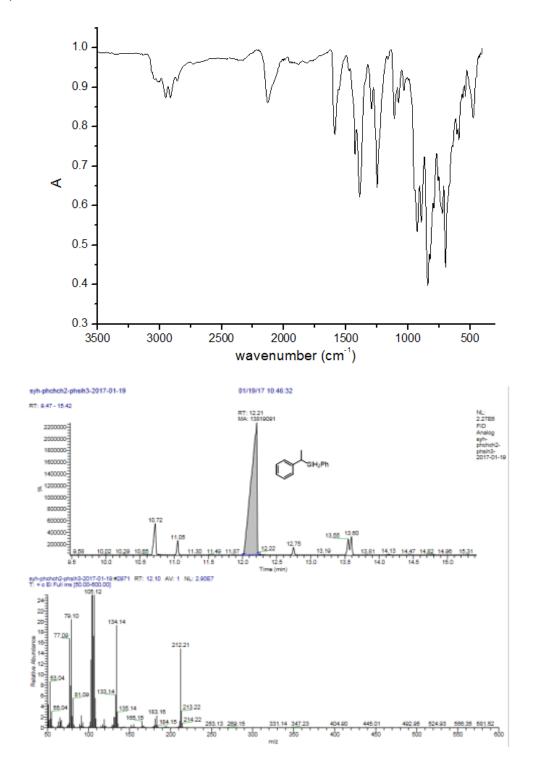
The reaction was carried out according to general method by using catalyst A (12.7 mg, 0.01 mmol), 1,5-Hexadiene (82 mg, 1.0 mmol) and cyclohexylsilane (228 mg, 2.0 mmol) at 90 °C for 8 h and then the resulting solution was concentrated in vacuum. The crude product was purified by column chromatography on silica gel with hexane as eluent. The title compound was isolated (249 mg, 80 %) as a colorless oil. ¹H NMR (400 MHz, CDCl₃): δ 3.56 (s, 4H, SiH₂), 1.76 (m, 10H, CH₂), 1.40 (m, 8H, CH₂), 1.25 (m, 10H, CH₂), 0.93 (m, 2H, CHSi), 0.70 (m, 4H, CH₂Si). ¹³C NMR (101 MHz, CDCl₃): δ 32.6 (CH₂), 29.2 (CH₂), 27.7 (CH₂) , 26.7 (CH₂) , 25.5 (CH₂) , 21.2 (CHSi), 7.7 (CH₂Si). ²⁹Si NMR (79 MHz, CDCl₃): δ -22.1 (SiH₂). GC-MS (EI): Calcd for C₁₈H₃₈Si: 310.25, found: 310.32.

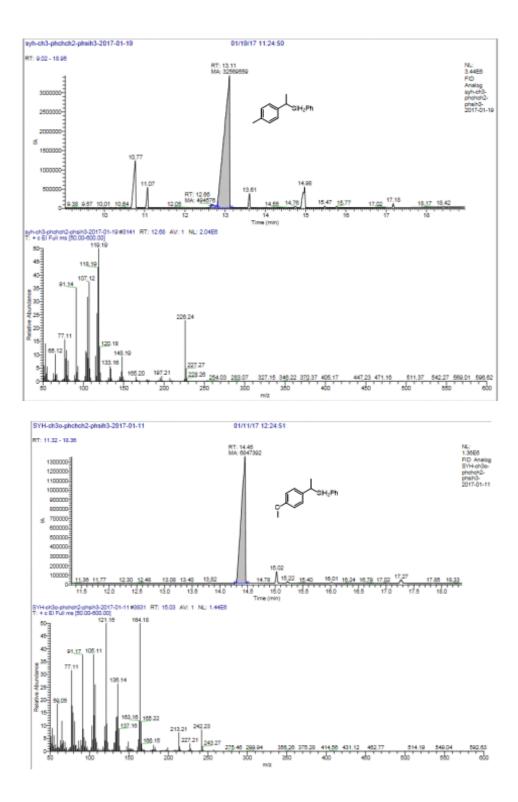

References

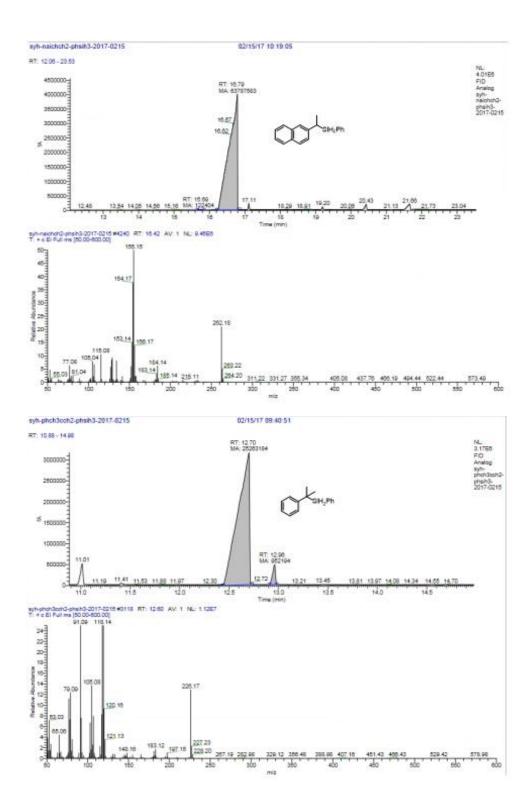

- 1 P. F. Fu, L. Brard, Y. W. Li and T. J. Marks, J. Am. Chem. Soc. 1995, 117, 7157-7168.
- 2 L. B. Junquera, M. C. Puerta and P. Valerga, *Organometallics*. 2012, **31**, 2175-2183.
- 3 A. K. Dash, I. Gourevich, J.- Q. Wang, J. -X. Wang, M.Kapon, and M. S. Eisen *Organometallics* 2001, **20**, 5084-5104.
- 4 M. D. Greenhalgh, D. J. Frank and S. P. Thomas, Adv. Synth. Catal. 2014, 356, 584-590.
- 5 C. Chen, M. B. Hecht, A. Kavara, W. W. Brennessel, B. Q. Mercado, D. J. Weix and P. L. Holland, J.Am. Chem. Soc. 2015, **137**, 13244-13247.
- 6 A. A. Trifonov, T. P. Spaniol and J. Okuda, *Dalton Trans.* 2004, 2245-2250.
- 7 X. Du, Y. Zhang, D. Peng and Z. Haung, *Angew. Chem. Int. Ed.* 2016, *55*, 6671-6675.
- 8 M. Ohashi, M. Konkol, I. Del Rosal, R. Poteau, L. Maron, J. Okuda, *J. Am. Chem. Soc.* 2008, 130, 6920-6921.

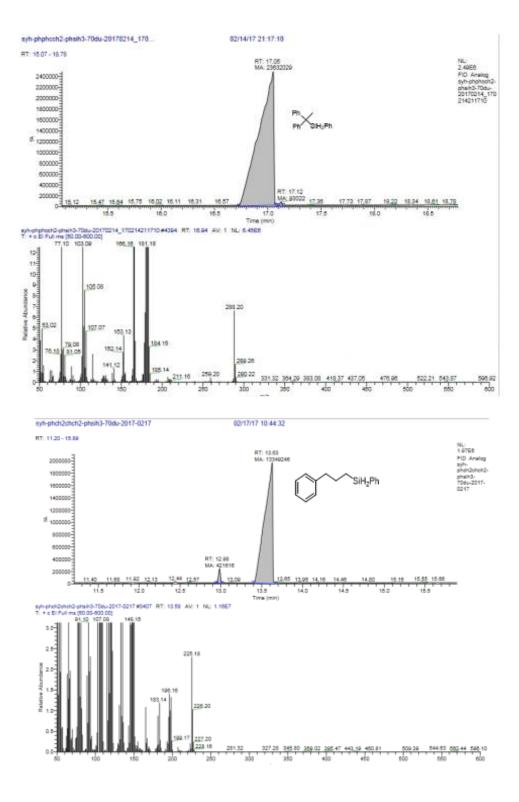
¹H NMR Spectrum of A

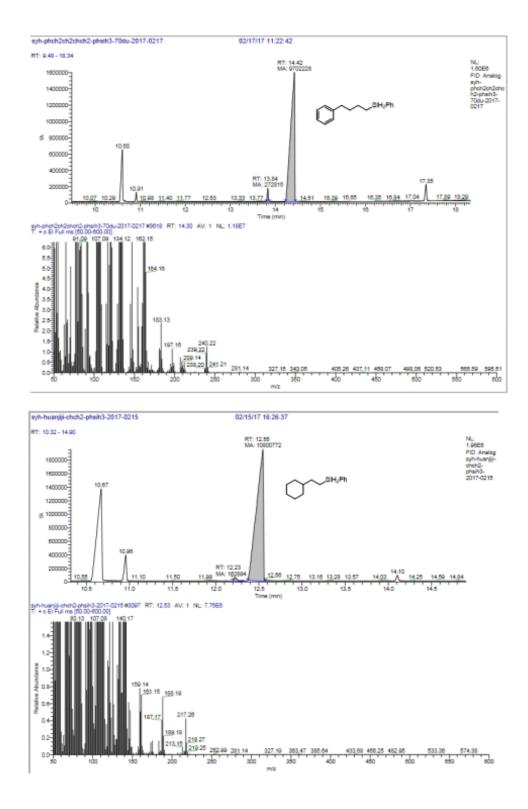

¹³C NMR Spectrum of A

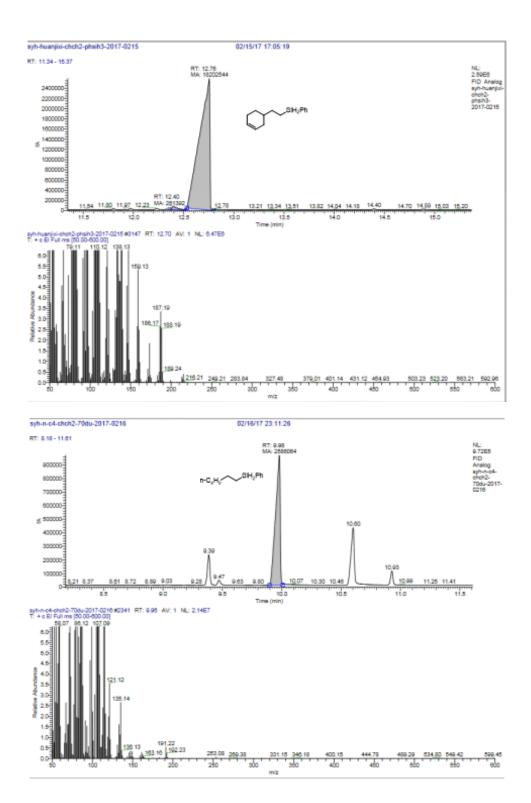


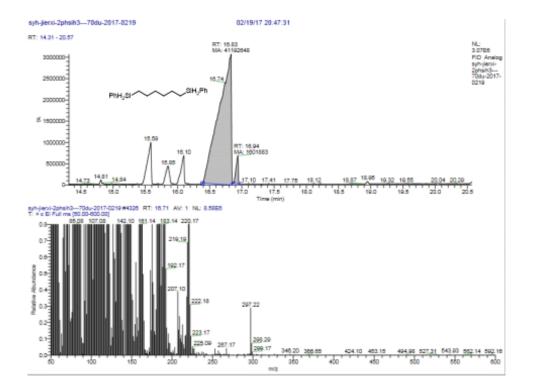

Proton-decoupled ²⁹Si NMR Spectrum of A

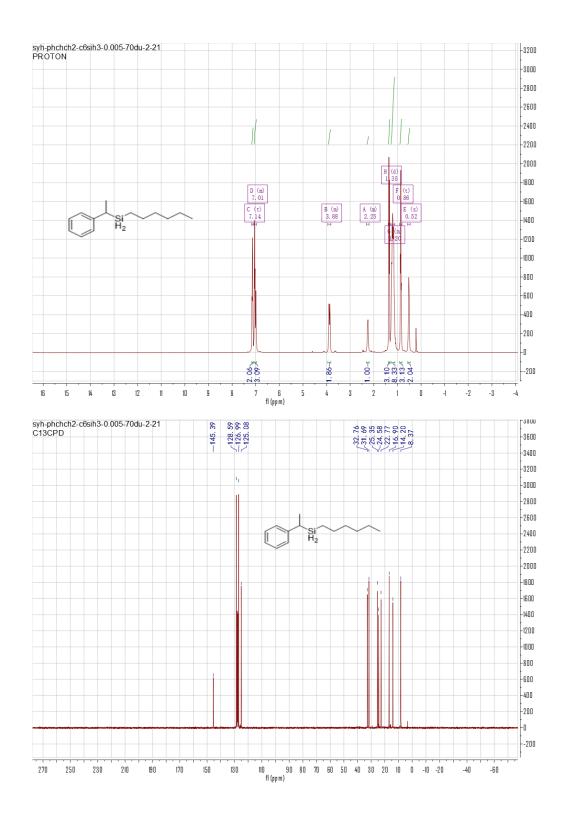

Proton-coupled ²⁹Si NMR Spectrum of A

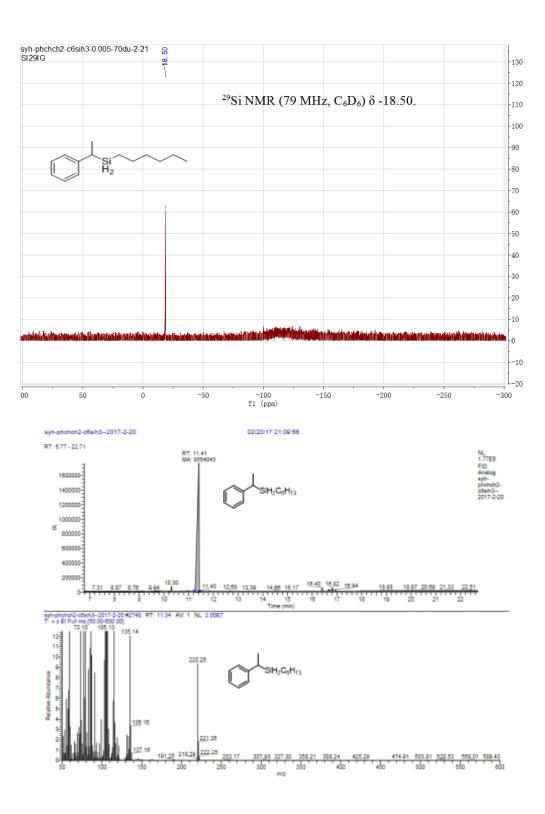


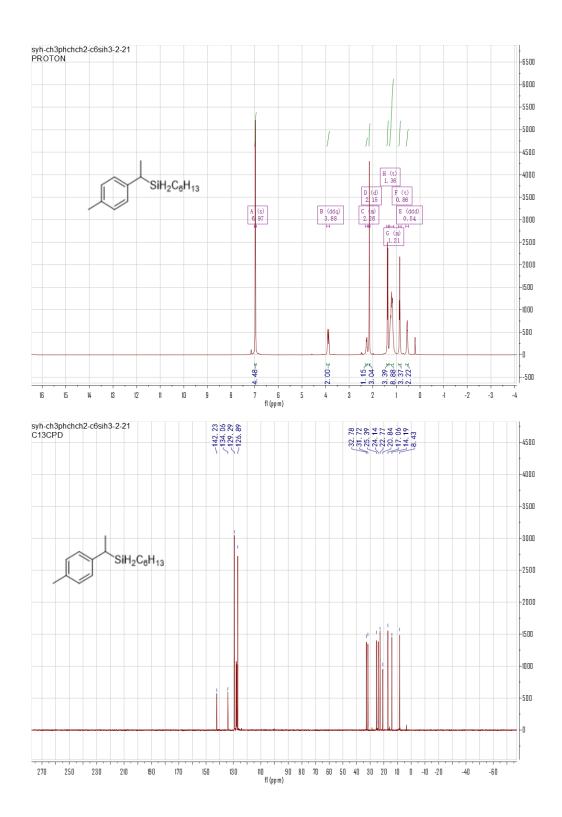

IR Spectrum of A

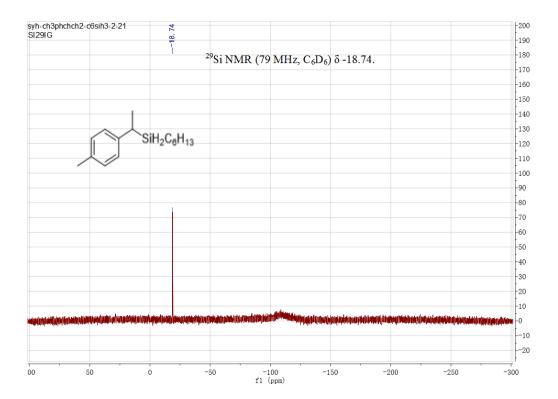


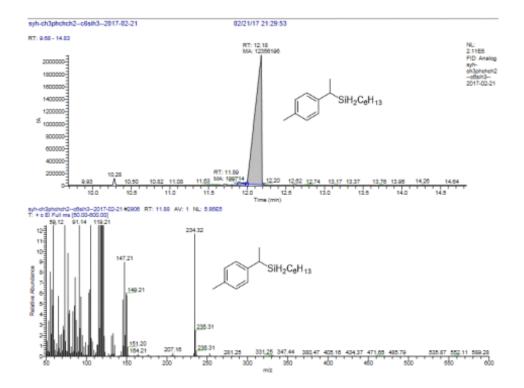


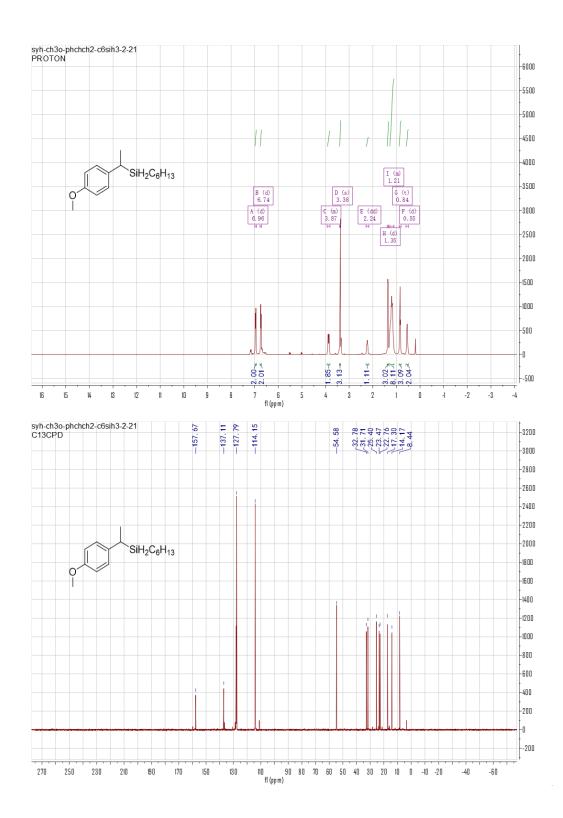


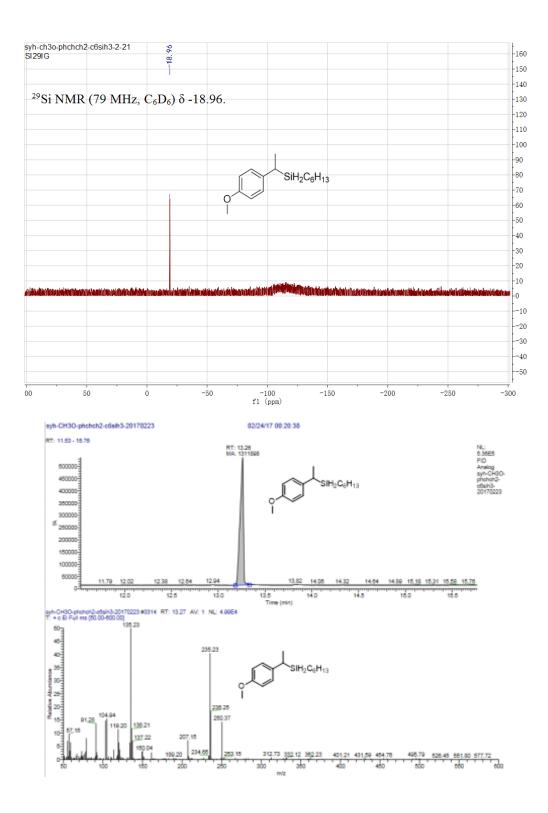


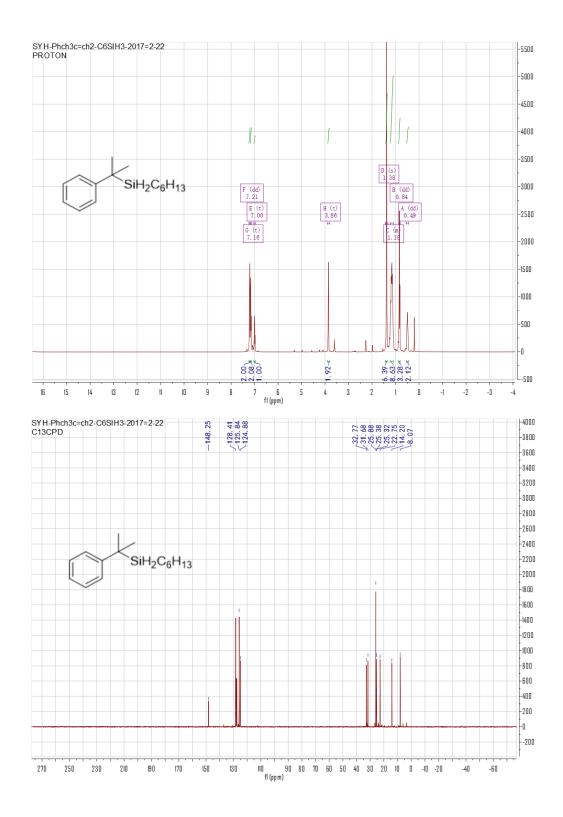


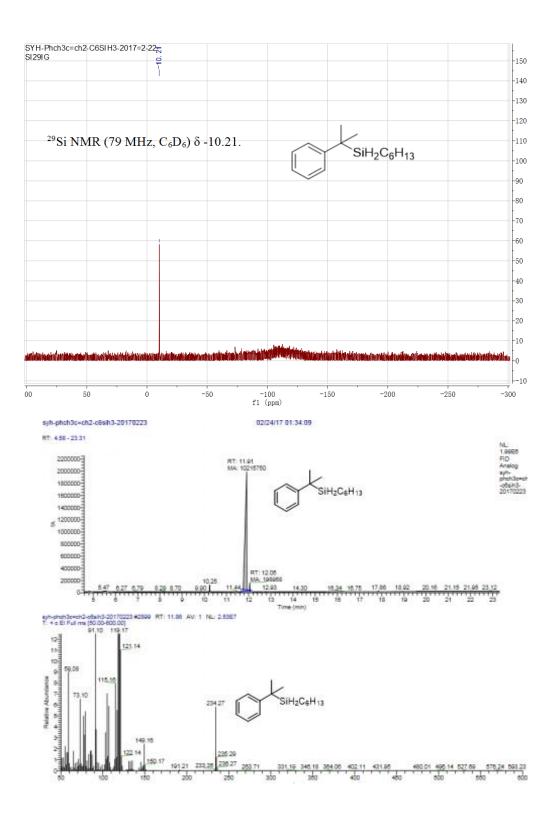


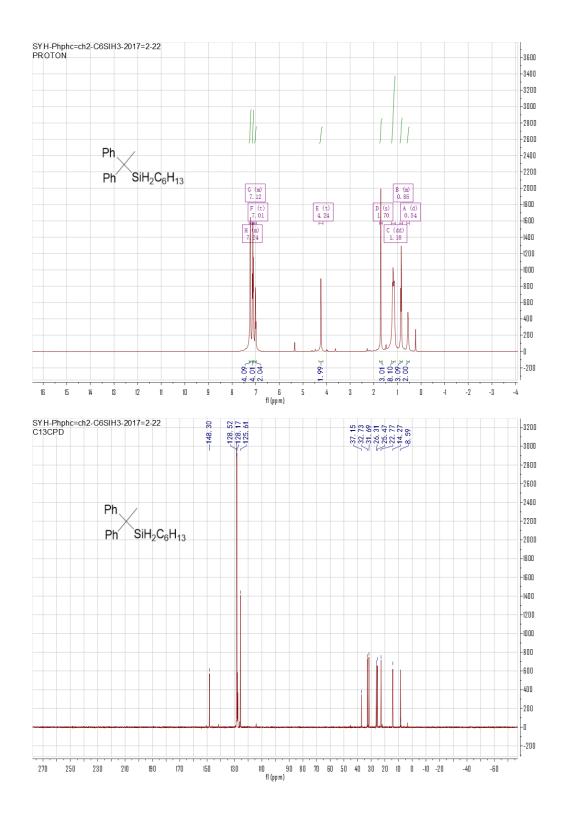


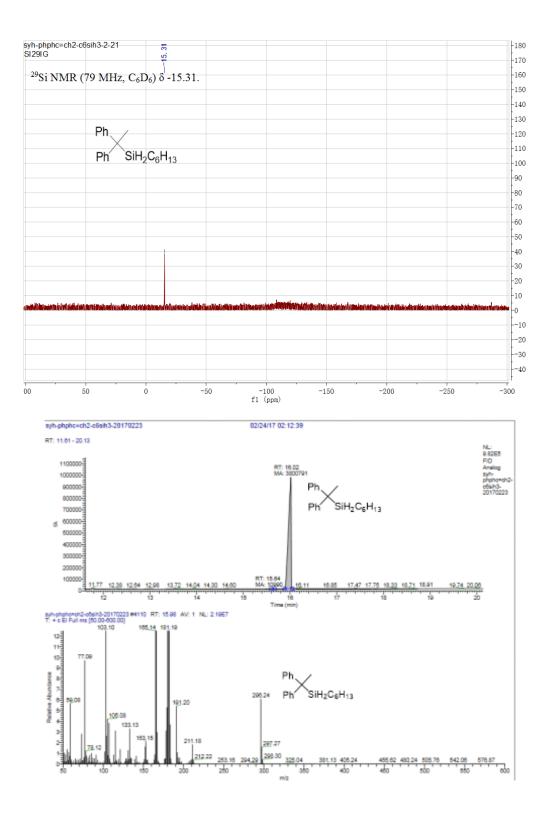


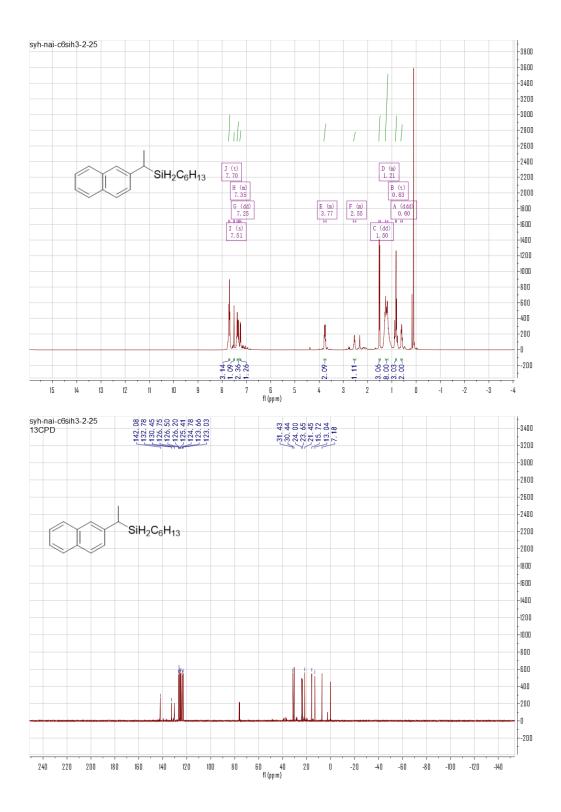


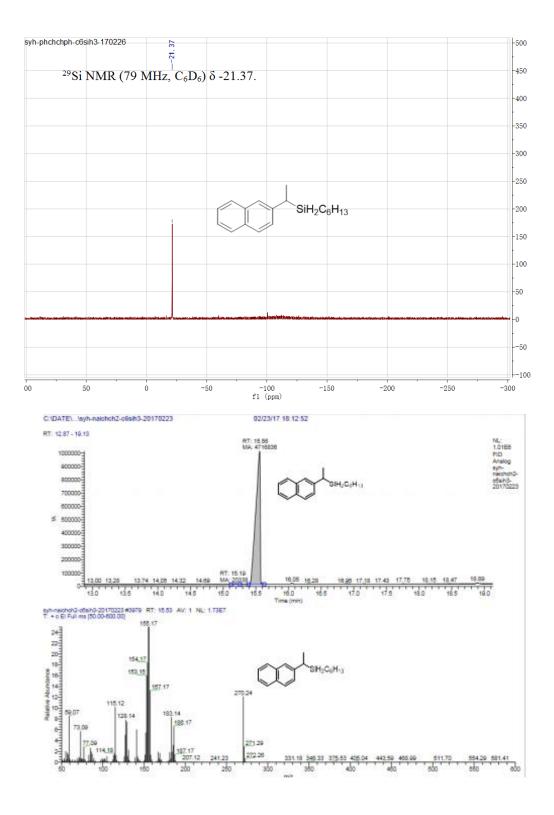


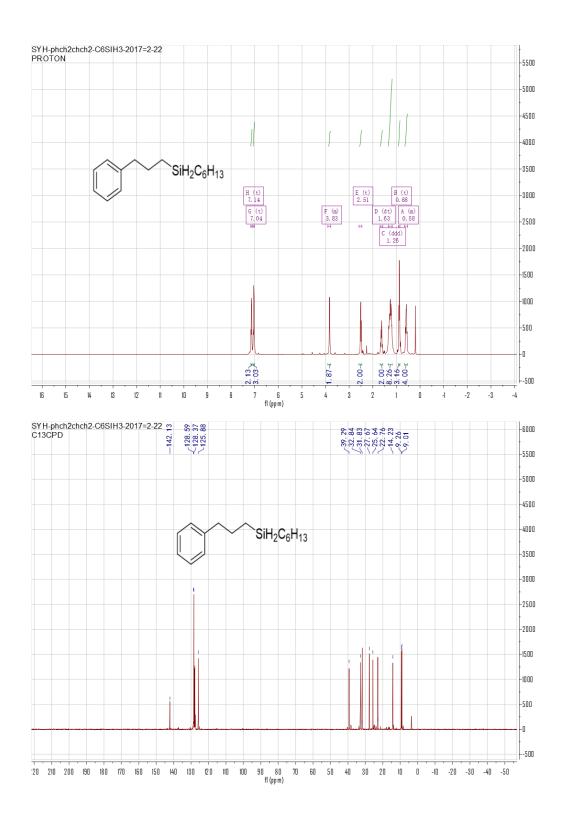


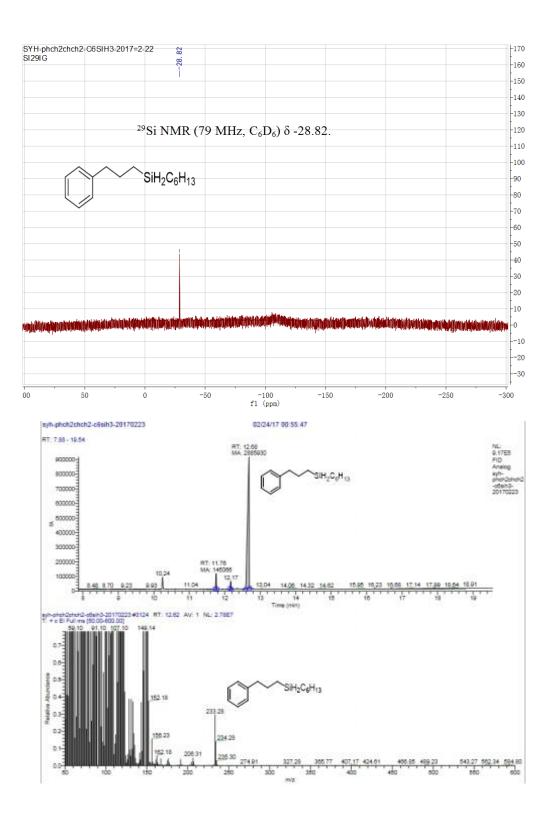


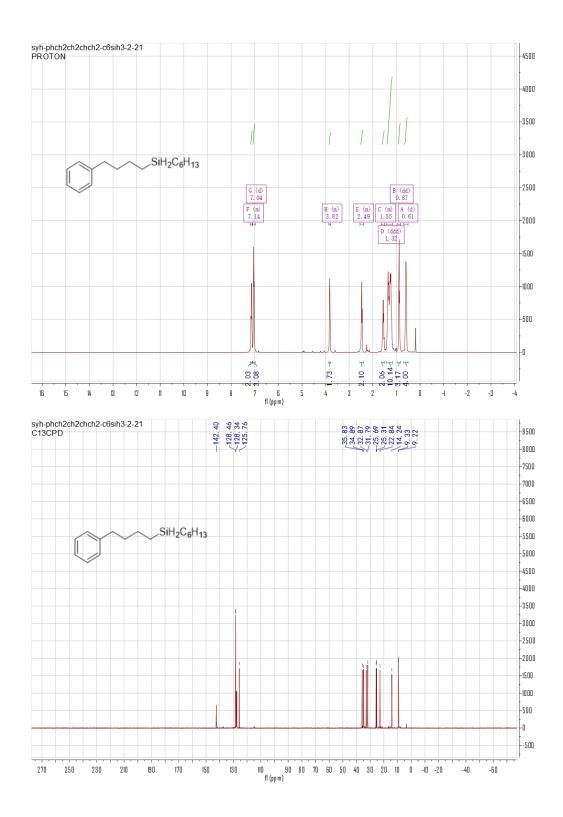


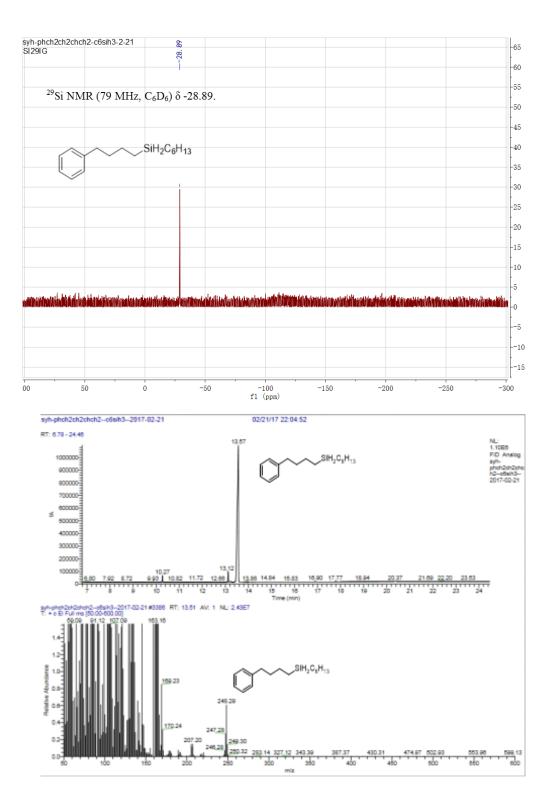


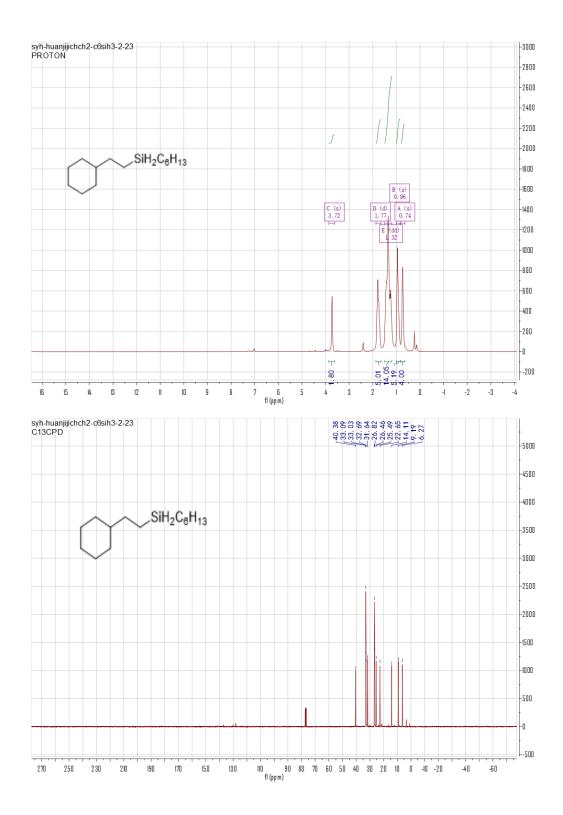


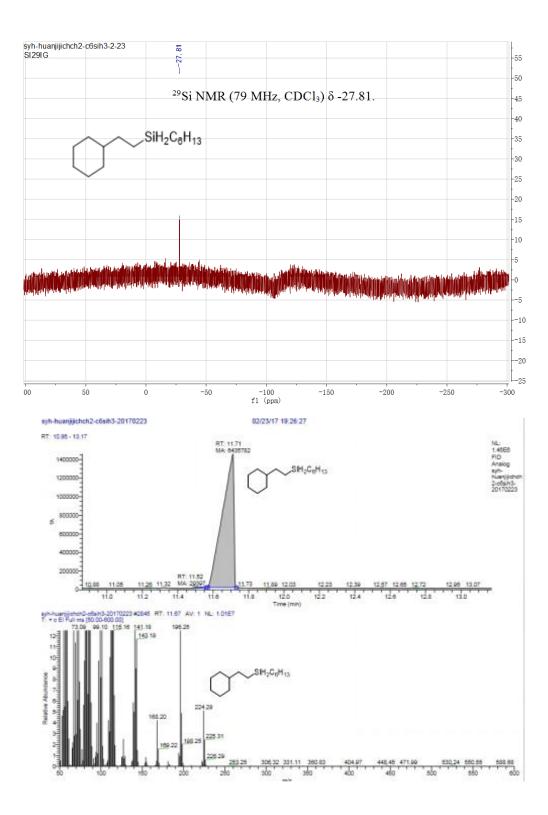


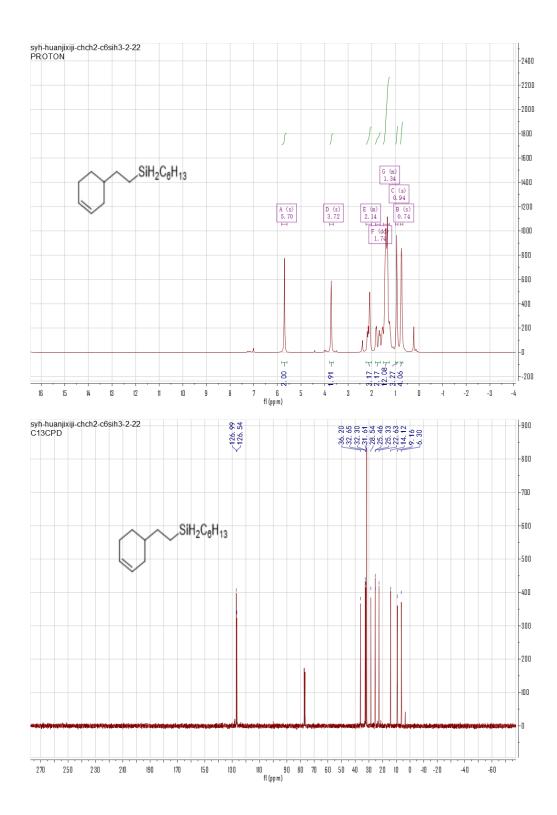


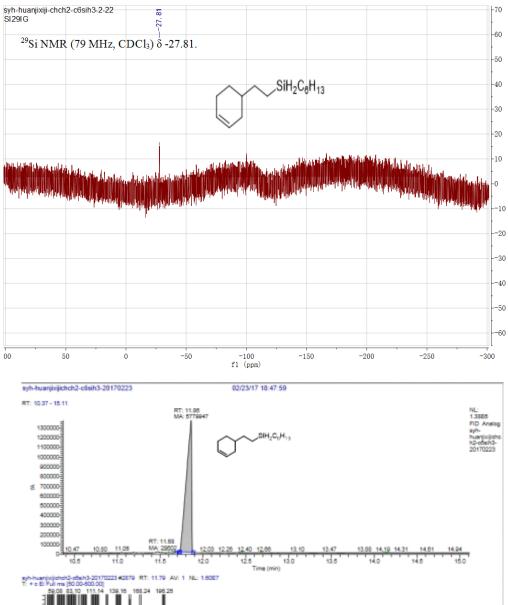


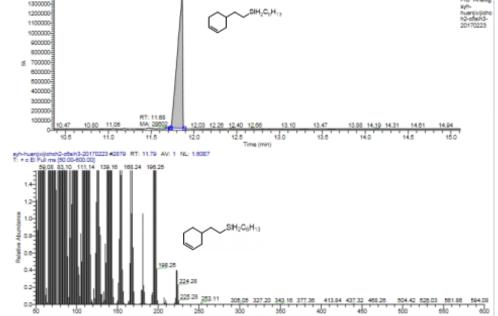


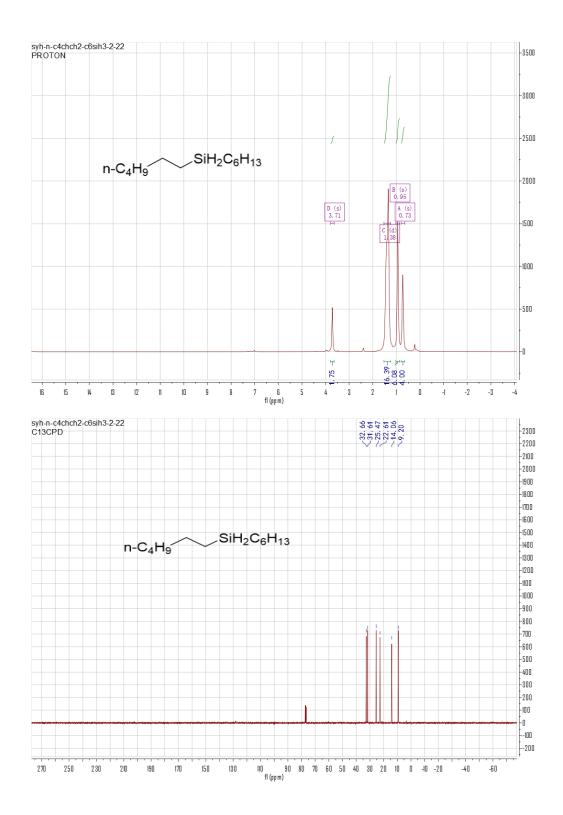


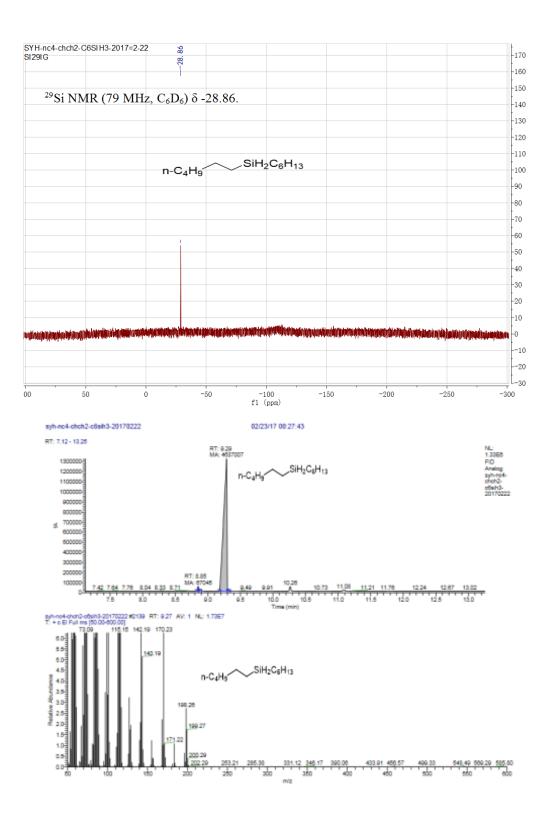


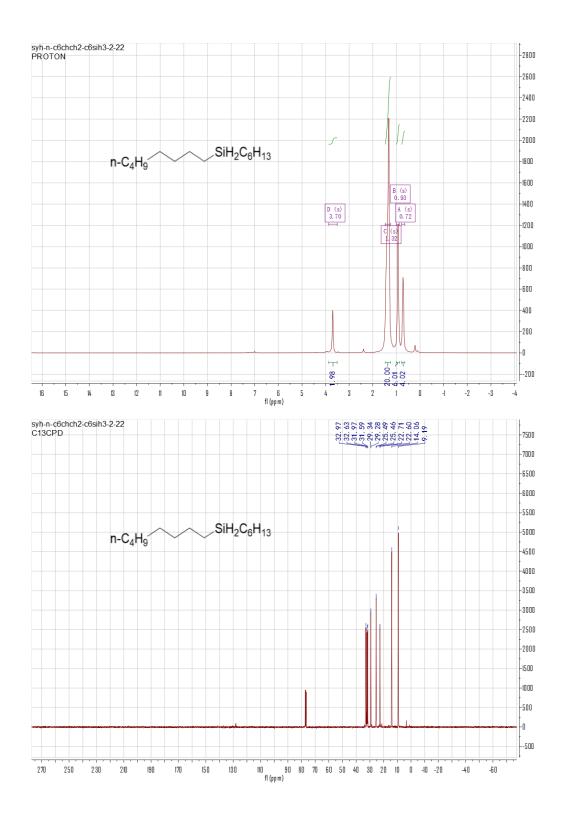


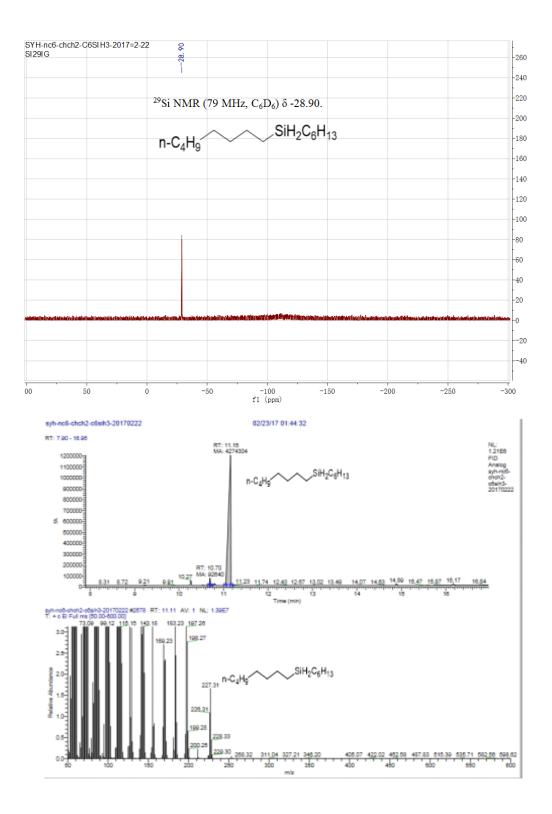


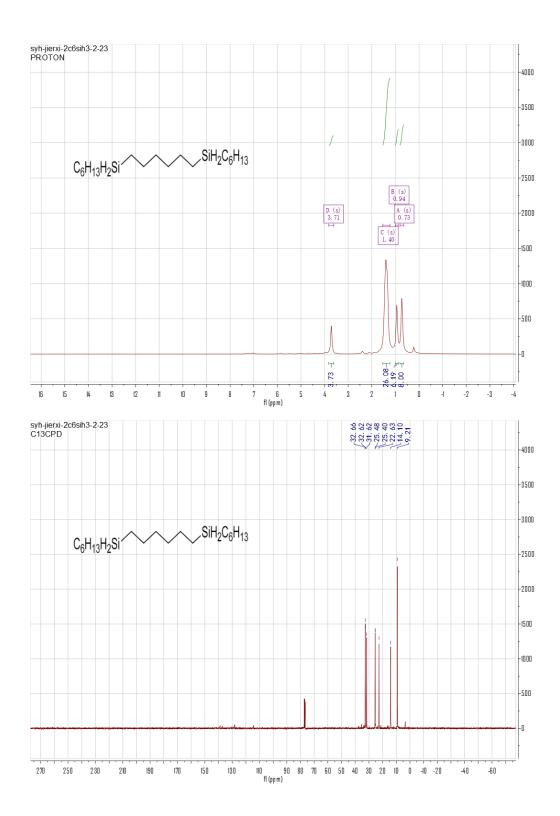







m/z


250


0.0

