Synthesis, characterization and solution behavior of a systematic series of pentapyridyl-supported Ru^{II} complexes: Comparison to bimetallic analogs

Sungho V. Park, John F. Berry*

Department of Chemistry, University of Wisconsin - Madison, 1101 University Avenue,

Madison, Wisconsin 53706

*E-mail: berry@chem.wisc.edu

Contents

Modified Syntheses for 2 and 3	S2
NMR Spectra	S3
CV Data	S5
Crystal Structure Tables	S7
Calculation of Thermodynamic Parameters	S 8
Reference	S9

Modified preparation of **2**. A mixture of Py_5Me_2 (561.7 mg, 1.266 mmol) and $RuCl_3 \cdot 3H_2O$ (351.8 mg, 1.345 mmol) was refluxed in 120 mL of ethanol under N_2 for 24 hours. After cooling the mixture to room temperature, the solvent was removed and water was added to the residue. The mixture was filtered over a fine frit, and to the yellow filtrate was added excess NH_4PF_6 . The resulting dark yellow precipitate was collected and washed with water. Yield: 473.8 mg (52%).

Modified preparation of **3**. To 412.7 mg of **1** (0.5692 mmol) in 300 mL of ultrapure water was added excess AgPF₆. The mixture was refluxed in air for 3 hours and filtered hot over celite to remove unreacted **1**. The filtrate was concentrated with a rotary evaporator and the crude product was washed with cold water prior to recrystallization in a mixture of water and acetone to give yellow crystals. Yield: 215.5 mg (44%).

Figure S1. NMR spectrum of $[Ru(Py_5Me_2)(N_3)](PF_6)$ (1) in CD₃CN.

Figure S2. NMR spectrum of [Ru(Py₅Me₂)(MeCN)](PF₆)₂ (**4**) in CD₃CN.

Peak Data:

peak [1] @ 300 [mV], 14.7860 (uA), 9.7211 (uC) peak [2] @ 1582 [mV], 30.7866 (uA), 75.7944 (uC) peak [3] @ 937 [mV], 1.4740 (uA), 1.9424 (uC) peak [4] @ 928 [mV], 41.6449 (uA), 273.5188 (uC) peak [5] @ 229 [mV], 16.2051 (uA), 11.6376 (uC) peak [6] @ 301 [mV], 14.4381 (uA), 9.1390 (uC) peak [7] @ 1012 [mV], 5.5482 (uA), 5.3944 (uC) peak [8] @ 1587 [mV], 20.7156 (uA), 25.0665 (uC) peak [9] @ 940 [mV], 2.0447 (uA), 2.2861 (uC) peak [10] @ 229 [mV], 16.5133 (uA), 14.0487 (uC)

CV Run for BASi-Epsilon

Peak Data:

peak [1] @ 516 [mV], 16.1440 (uA), 10.3923 (uC) peak [2] @ 1050 [mV], 3.0030 (uA), 1.8449 (uC) peak [3] @ 1259 [mV], 1.6815 (uA), 1.1315 (uC) peak [4] @ 1499 [mV], 2.6276 (uA), 1.7675 (uC) peak [5] @ 440 [mV], 16.4492 (uA), 10.5065 (uC) peak [6] @ 515 [mV], 16.4523 (uA), 10.5221 (uC) peak [7] @ 1047 [mV], 2.7192 (uA), 1.2835 (uC) peak [8] @ 1258 [mV], 1.4893 (uA), 0.9050 (uC) peak [9] @ 1499 [mV], 2.1027 (uA), 1.2066 (uC) peak [10] @ 442 [mV], 16.5286 (uA), 10.7109 (uC)

Crystal	Structure	Tables
---------	-----------	--------

	1	3	4
Compound	$[\mathbf{D}_{\mathbf{N}}(\mathbf{D}_{\mathbf{Y}},\mathbf{M}_{\mathbf{C}})(\mathbf{N}_{\mathbf{V}})](\mathbf{D}_{\mathbf{C}})$	$[Ru(Py_5Me_2)(OH_2)](PF_6)_2$	$[\mathbf{D}_{\mathbf{M}}(\mathbf{D}_{\mathbf{M}}, \mathbf{M}_{\mathbf{D}}))(\mathbf{M}_{\mathbf{D}}(\mathbf{M}))](\mathbf{D}_{\mathbf{D}})$
Compound	$[Ru(Py_5Me_2)(N_3)](PF_6)$	• 2H ₂ O	$[Ru(Py_5Me_2)(MeCN)](PF_6)$
Empirical formula	$C_{29}H_{25}F_6N_8PRu$	$C_{29}H_{31}F_{12}N_5O_3P_2Ru$	$C_{31}H_{28}F_{12}N_6P_2Ru$
Formula weight	731.61	888.60	875.60
Temperature/K	100.01	100.0	100.0
Crystal system	triclinic	triclinic	triclinic
Space group	$P\overline{1}$	$P\overline{1}$	$P\overline{1}$
a/Å	9.805(4)	11.563(4)	11.443(4)
b/Å	12.202(4)	12.841(5)	12.524(4)
c/Å	12.256(5)	13.303(5)	13.131(5)
α/°	94.78(1)	82.41(1)	110.34(2)
β/°	99.50(1)	65.52(1)	108.48(1)
γ/°	106.99(2)	64.36(2)	90.75(1)
Volume/Å ³	1369.6(9)	1618(1)	1657(1)
Ζ	2	2	2
$\rho_{calc}g/cm^3$	1.774	1.824	1.755
μ/mm^{-1}	0.710	0.695	0.672
F(000)	736.0	892.0	876.0
Crystal size/mm ³	$0.22\times0.05\times0.05$	$0.409 \times 0.237 \times 0.044$	$0.095 \times 0.051 \times 0.01$
Radiation	MoK α ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)	MoKa ($\lambda = 0.71073$)
2\Overline range for data collection/°	3.402 to 52.808	3.37 to 55.026	3.502 to 52.888
Index ranges		$-14 \le h \le 15, -16 \le k \le$	$-14 \le h \le 14, -15 \le k \le 15,$
e	$15, -15 \le 1 \le 15$	$16, -17 \le l \le 17$	$-16 \le l \le 16$
Reflections collected	20179	32212	29045
Independent	5604 [$R_{int} = 0.0785$,	7421 [$R_{int} = 0.0734$, R_{sigma}	$6829 [R_{int} = 0.0626, R_{sigma} =$
reflections	$R_{sigma} = 0.0802$]	= 0.0777]	0.0639]
Data/restraints/par ameters	5604/0/408	7421/104/543	6829/0/472
Goodness-of-fit on F ²	1.022	1.024	1.036
Final R indexes	$R_1 = 0.0546, wR_2 =$	$R_1 = 0.0472, wR_2 =$	$\mathbf{D} = 0.0201 \dots \mathbf{D} = 0.0000$
[I>=2σ (I)]	0.1213	0.1168	$R_1 = 0.0391, wR_2 = 0.0860$
Final R indexes [all data]	$R_1 = 0.0776, wR_2 = 0.1303$	$R_1 = 0.0795, wR_2 = 0.1250$	$R_1 = 0.0608, wR_2 = 0.0906$
Largest diff. peak/hole / e Å ⁻³	1.17/-0.47	0.81/-0.58	0.60/-0.97

Calculation of Thermodynamic Parameters

 K_{eq} for CD₃CN substitution from **3**. A known concentration of **3** in CD₃CN was used for NMR analysis. The peak integration values corresponding to $[Ru(Py_5Me_2)(OH_2)]^{2+}$, $[Ru(Py_5Me_2)(CD_3CN)]^{2+}$ and H_2O were respectively normalized and used in the following equation:

$$K_{eq} = \frac{[[Ru^{II}(Py_5Me_2)(CD_3CN)]^{2+}][H_2O]}{[[Ru^{II}(Py_5Me_2)(H_2O)]^{2+}]}$$

 K_{eq} for cross reaction in 1 and 2. K values were calculated according to the formula $K = e^{F(\Delta E)/RT}$ as described in the reference.¹ Signs of the $E_{1/2}$ values were flipped to account for oxidations; hence, $\Delta E = -E_{1/2}$ (Ru–X) + $E_{1/2}$ (Ru–MeCN).

References

1 S. W. Feldberg and L. Jeftic, J. Phys. Chem., 1972, 76, 2439–2446.